Home
Class 12
MATHS
If x ^ 2 + y^ 2 + sin y = 4 ,...

If ` x ^ 2 + y^ 2 + sin y = 4 , ` then the value of ` | (d^ 2 y ) /( dx ^ 2 ) | ` at point ` ( -2, 0 ) ` is …..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \left| \frac{d^2y}{dx^2} \right| \) at the point \( (-2, 0) \) given the equation: \[ x^2 + y^2 + \sin y = 4 \] ### Step 1: Differentiate the equation implicitly We start by differentiating both sides of the equation with respect to \( x \): \[ \frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) + \frac{d}{dx}(\sin y) = \frac{d}{dx}(4) \] This gives us: \[ 2x + 2y \frac{dy}{dx} + \cos y \frac{dy}{dx} = 0 \] ### Step 2: Solve for \( \frac{dy}{dx} \) Now, we can factor out \( \frac{dy}{dx} \): \[ 2x + \left(2y + \cos y\right) \frac{dy}{dx} = 0 \] Rearranging gives: \[ \frac{dy}{dx} = -\frac{2x}{2y + \cos y} \] ### Step 3: Evaluate \( \frac{dy}{dx} \) at the point \( (-2, 0) \) Substituting \( x = -2 \) and \( y = 0 \): \[ \frac{dy}{dx} = -\frac{2(-2)}{2(0) + \cos(0)} = -\frac{-4}{1} = 4 \] ### Step 4: Differentiate again to find \( \frac{d^2y}{dx^2} \) Now we differentiate the expression for \( \frac{dy}{dx} \) again: Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(2y + \cos y)(-2) - (-2x)(\frac{d}{dx}(2y + \cos y)}{(2y + \cos y)^2} \] We need to compute \( \frac{d}{dx}(2y + \cos y) \): \[ \frac{d}{dx}(2y + \cos y) = 2\frac{dy}{dx} - \sin y \frac{dy}{dx} \] Substituting \( \frac{dy}{dx} = 4 \) and \( y = 0 \): \[ \frac{d}{dx}(2y + \cos y) = 2(4) - \sin(0)(4) = 8 - 0 = 8 \] ### Step 5: Substitute back to find \( \frac{d^2y}{dx^2} \) Now substituting back into the formula for \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{(2(0) + \cos(0))(-2) - (-2(-2))(8)}{(2(0) + \cos(0))^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{(1)(-2) - (4)(8)}{(1)^2} = -2 - 32 = -34 \] ### Step 6: Find the absolute value Finally, we find the absolute value: \[ \left| \frac{d^2y}{dx^2} \right| = | -34 | = 34 \] ### Final Answer Thus, the value of \( \left| \frac{d^2y}{dx^2} \right| \) at the point \( (-2, 0) \) is: \[ \boxed{34} \]

To solve the problem, we need to find the value of \( \left| \frac{d^2y}{dx^2} \right| \) at the point \( (-2, 0) \) given the equation: \[ x^2 + y^2 + \sin y = 4 \] ### Step 1: Differentiate the equation implicitly We start by differentiating both sides of the equation with respect to \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)+siny=4 then the value of |(d^(2)y)/(dx^(2))| at point (-2,0) is ……………..

If x, y in [0, 2pi] and sin x + sin y=2 , then the value of x+y is

If y ^(2) =3 cos ^(2)x+ 2 sin ^(2)x, then the value of y ^(4) +y^(3) (d^(2)y)/(dx ^(2)) is

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If y=A sin(omegat-kx), then the value of (d^2y)/(dt^2)/(d^2y)/(dx^2)

If y= A sin x+ B cos x , then prove that (d^2y)/(dx^2)+y=0 .

If x=cos t + (log tant)/2, y=sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2)  at t =pi/4.

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0

Given that y = 3 cos x + 2 sin x . Show that (d^(2)y)/(dx^(2)) + y = 0

If 2 sin x. cos y=1, then (d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4)) is …….

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 30 | JEE -2020-MATHEMATICS
  1. Which one of the following statement is neither a tautology nor a fall...

    Text Solution

    |

  2. The area of the region enclosed by x ^ 2 + y ^ 2 = 2 , y ^ 2...

    Text Solution

    |

  3. If z = x + iy, x , y in R , then the louts Im (( z - 2 ) ...

    Text Solution

    |

  4. If the distance between foci of a hyperbola is twice the distance betw...

    Text Solution

    |

  5. Let alpha, beta be two real roots of the equation cot ^ 2...

    Text Solution

    |

  6. A biased coin with probability of getting head is twice that of tail, ...

    Text Solution

    |

  7. Let f ((x + 1) /(x - 1)) = 2x + 1 , then integral int f(x)\ dx is...

    Text Solution

    |

  8. Let P be a point on parabola x ^ 2 = 4y . If the distance of P...

    Text Solution

    |

  9. The value of ("lim")(xvec2)(2^x+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))i s ...

    Text Solution

    |

  10. If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 ...

    Text Solution

    |

  11. How many 7 digit numbers using all digits from 1, 1, 2, 2, 3, 3, 4, so...

    Text Solution

    |

  12. Let A (0,2 ) , B ( 3, 0 ) , C ( 6, 4 ) be the vertices of triangle ...

    Text Solution

    |

  13. Let f (x) = [x] and g (x ) =|x| , AA x in R then value of...

    Text Solution

    |

  14. Evaluate : int(0)^(1) cot^(-1) (1-x + x^(2))dx

    Text Solution

    |

  15. Which of the following is incorrect : BR> A. (pi) ^ (1// pi ) ...

    Text Solution

    |

  16. If x ^ 2 + y^ 2 + sin y = 4 , then the value of | ...

    Text Solution

    |

  17. Let ( 1 + x + x ^ 2 ) ^ 5 = a 0 + a 1 x + a 2 x ^ 2 ...

    Text Solution

    |

  18. The sum of first 50 term of the series 1 + (3 ) /(2) + (7...

    Text Solution

    |

  19. The standard deviation of first 50 even natural number is lamd...

    Text Solution

    |

  20. Let f(x)-|3-|2-|x-1|||, AA x epsilon R not differentiable at x(1),x(2)...

    Text Solution

    |