Home
Class 12
MATHS
If alpha, beta are the roots of x^2 - ...

If `alpha, beta` are the roots of `x^2 - sqrt(3)x + 1 = 0` then `alpha^(21) + beta^(21)` is:

A

`0`

B

`sqrt(3)`

C

`-sqrt(3)`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \alpha^{21} + \beta^{21} \) where \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - \sqrt{3}x + 1 = 0 \). ### Step 1: Find the roots of the quadratic equation The roots of a quadratic equation \( ax^2 + bx + c = 0 \) are given by the formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \( x^2 - \sqrt{3}x + 1 = 0 \), we have \( a = 1 \), \( b = -\sqrt{3} \), and \( c = 1 \). Calculating the discriminant: \[ b^2 - 4ac = (-\sqrt{3})^2 - 4 \cdot 1 \cdot 1 = 3 - 4 = -1 \] Since the discriminant is negative, the roots are complex. Now substituting into the quadratic formula: \[ x = \frac{\sqrt{3} \pm \sqrt{-1}}{2} = \frac{\sqrt{3} \pm i}{2} \] Thus, the roots are: \[ \alpha = \frac{\sqrt{3}}{2} + \frac{i}{2}, \quad \beta = \frac{\sqrt{3}}{2} - \frac{i}{2} \] ### Step 2: Express the roots in polar form We can express \( \alpha \) and \( \beta \) in polar form using Euler's formula. The modulus \( r \) and argument \( \theta \) can be calculated as follows: - The modulus \( r \) is given by: \[ r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{3}{4} + \frac{1}{4}} = \sqrt{1} = 1 \] - The argument \( \theta \) for \( \alpha \) is: \[ \theta = \tan^{-1}\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \] Thus, we can write: \[ \alpha = e^{i\frac{\pi}{6}}, \quad \beta = e^{-i\frac{\pi}{6}} \] ### Step 3: Use De Moivre's Theorem According to De Moivre's theorem: \[ \alpha^n = \left(e^{i\frac{\pi}{6}}\right)^n = e^{i\frac{n\pi}{6}}, \quad \beta^n = \left(e^{-i\frac{\pi}{6}}\right)^n = e^{-i\frac{n\pi}{6}} \] Thus, \[ \alpha^{21} = e^{i\frac{21\pi}{6}}, \quad \beta^{21} = e^{-i\frac{21\pi}{6}} \] ### Step 4: Calculate \( \alpha^{21} + \beta^{21} \) Now we need to find: \[ \alpha^{21} + \beta^{21} = e^{i\frac{21\pi}{6}} + e^{-i\frac{21\pi}{6}} = 2 \cos\left(\frac{21\pi}{6}\right) \] We simplify \( \frac{21\pi}{6} \): \[ \frac{21\pi}{6} = \frac{21}{6} \cdot \pi = \frac{7\pi}{2} \] Now, we can reduce \( \frac{7\pi}{2} \) to an equivalent angle within the range \( [0, 2\pi) \): \[ \frac{7\pi}{2} - 3\pi = \frac{7\pi - 6\pi}{2} = \frac{\pi}{2} \] Thus, \[ \cos\left(\frac{21\pi}{6}\right) = \cos\left(\frac{\pi}{2}\right) = 0 \] Therefore, \[ \alpha^{21} + \beta^{21} = 2 \cdot 0 = 0 \] ### Final Answer \[ \alpha^{21} + \beta^{21} = 0 \]

To solve the problem, we need to find \( \alpha^{21} + \beta^{21} \) where \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 - \sqrt{3}x + 1 = 0 \). ### Step 1: Find the roots of the quadratic equation The roots of a quadratic equation \( ax^2 + bx + c = 0 \) are given by the formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \( x^2 - \sqrt{3}x + 1 = 0 \), we have \( a = 1 \), \( b = -\sqrt{3} \), and \( c = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 19

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha, beta are the roots of x^(2) - x + 3 = 0 , then alpha^(4) +beta^(4) =

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha, beta are the rootsof 6x^(2)-4sqrt2 x-3=0 , then alpha^(2)beta+alpha beta^(2) is

If alpha, beta are the roots of x^(2)+x+1=0 , then alpha^(-2)+beta^(-2) is

If alpha, beta are the roots of 3x^(2) + 5x - 7 = 0 then (1)/(3alpha+5)^(2)+ (1)/(3beta+5)^(2)=

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha , beta ,1 are roots of x^3 -2x^2 -5x +6=0 ( alpha gt 1) then 3 alpha + beta=