Home
Class 12
MATHS
If theta in R - {(4n + 1) pi/4 , n in I}...

If `theta in R - {(4n + 1) pi/4 , n in I}` , then range of `(cos 3 theta + sin 3 theta)/(cos theta - sin theta)` is :

A

`[-1, 3]`

B

`[-1, 3)`

C

`[1, 3)`

D

`[-2,2]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of the function \[ f(\theta) = \frac{\cos 3\theta + \sin 3\theta}{\cos \theta - \sin \theta} \] given that \(\theta \in \mathbb{R} \setminus \{(4n + 1)\frac{\pi}{4} : n \in \mathbb{Z}\}\). ### Step 1: Rewrite \(\cos 3\theta + \sin 3\theta\) Using the angle addition formulas, we can express \(\cos 3\theta\) and \(\sin 3\theta\): \[ \cos 3\theta = 4\cos^3 \theta - 3\cos \theta \] \[ \sin 3\theta = 3\sin \theta - 4\sin^3 \theta \] Thus, \[ \cos 3\theta + \sin 3\theta = (4\cos^3 \theta - 3\cos \theta) + (3\sin \theta - 4\sin^3 \theta) \] ### Step 2: Simplify the numerator Combining the terms, we have: \[ \cos 3\theta + \sin 3\theta = 4\cos^3 \theta - 4\sin^3 \theta + 3\sin \theta - 3\cos \theta \] Factoring out \(4\) from the first two terms gives: \[ = 4(\cos^3 \theta - \sin^3 \theta) + 3(\sin \theta - \cos \theta) \] Using the identity for the difference of cubes, we get: \[ \cos^3 \theta - \sin^3 \theta = (\cos \theta - \sin \theta)(\cos^2 \theta + \cos \theta \sin \theta + \sin^2 \theta) \] Since \(\cos^2 \theta + \sin^2 \theta = 1\), we can simplify further: \[ = (\cos \theta - \sin \theta)(1 + \cos \theta \sin \theta) \] Thus, the numerator becomes: \[ \cos 3\theta + \sin 3\theta = 4(\cos \theta - \sin \theta)(1 + \cos \theta \sin \theta) + 3(\sin \theta - \cos \theta) \] ### Step 3: Substitute into the function Now substituting back into \(f(\theta)\): \[ f(\theta) = \frac{4(\cos \theta - \sin \theta)(1 + \cos \theta \sin \theta) + 3(\sin \theta - \cos \theta)}{\cos \theta - \sin \theta} \] ### Step 4: Cancel the common terms Since \(\cos \theta - \sin \theta\) is not zero (as \(\theta\) does not belong to the excluded set), we can cancel: \[ f(\theta) = 4(1 + \cos \theta \sin \theta) - 3 \] This simplifies to: \[ f(\theta) = 1 + 4\cos \theta \sin \theta \] ### Step 5: Use the double angle identity Using the double angle identity \(2\sin \theta \cos \theta = \sin 2\theta\): \[ f(\theta) = 1 + 2\sin 2\theta \] ### Step 6: Determine the range of \(f(\theta)\) The sine function \(\sin 2\theta\) ranges from \(-1\) to \(1\). Therefore, \(2\sin 2\theta\) ranges from \(-2\) to \(2\). Adding \(1\) to this range gives: \[ 1 + 2\sin 2\theta \text{ ranges from } 1 - 2 = -1 \text{ to } 1 + 2 = 3 \] ### Step 7: Exclude the point where \(\theta = \frac{\pi}{4}\) Since \(\theta\) cannot take the values of \((4n + 1)\frac{\pi}{4}\), we need to check if \(f(\theta)\) can equal \(3\): Setting \(f(\theta) = 3\): \[ 1 + 2\sin 2\theta = 3 \implies 2\sin 2\theta = 2 \implies \sin 2\theta = 1 \] This occurs when \(2\theta = \frac{\pi}{2} + 2k\pi\) or \(\theta = \frac{\pi}{4} + k\pi\), which is excluded from the domain. ### Final Range Thus, the range of \(f(\theta)\) is: \[ \text{Range of } f(\theta) = (-1, 3) \]

To solve the problem, we need to find the range of the function \[ f(\theta) = \frac{\cos 3\theta + \sin 3\theta}{\cos \theta - \sin \theta} \] given that \(\theta \in \mathbb{R} \setminus \{(4n + 1)\frac{\pi}{4} : n \in \mathbb{Z}\}\). ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 19

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

([cos theta+i sin theta)/(sin theta+i cos theta))^(4)=?

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Prove that : (sin 5theta + sin 3theta)/(cos 5theta + cos 3theta) = tan 4theta

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

Prove that : cos^3 2theta+3cos2theta=4(cos^6theta-sin^6 theta)

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.

If tan( pi cos theta) = cot ( pi sin theta) then sin (theta + pi/4) equals

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .