Home
Class 12
MATHS
Let f(1) : R to R, f(2) : [0, oo) to R, ...

Let `f_(1) : R to R, f_(2) : [0, oo) to R, f_(3) : R to R` be three function defined as
`f_(1)(x) = {(|x|, x < 0),(e^x , x ge 0):}, f_(2)(x)=x^2, f_(3)(x) = {(f_(2)(f_1(x)),x < 0),(f_(2)(f_1(x))-1, x ge 0):}` then `f_3(x)` is:

A

even function

B

odd function

C

neither even nor odd

D

periodic function

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f_3(x) \), we will analyze the given functions step by step. ### Step 1: Define the functions 1. **Function \( f_1(x) \)**: \[ f_1(x) = \begin{cases} |x| & \text{if } x < 0 \\ e^x & \text{if } x \geq 0 \end{cases} \] 2. **Function \( f_2(x) \)**: \[ f_2(x) = x^2 \] 3. **Function \( f_3(x) \)**: \[ f_3(x) = \begin{cases} f_2(f_1(x)) & \text{if } x < 0 \\ f_2(f_1(x)) - 1 & \text{if } x \geq 0 \end{cases} \] ### Step 2: Calculate \( f_3(x) \) for \( x < 0 \) For \( x < 0 \): - We have \( f_1(x) = |x| = -x \) (since \( x \) is negative). - Therefore, \( f_2(f_1(x)) = f_2(-x) = (-x)^2 = x^2 \). Thus, \[ f_3(x) = f_2(f_1(x)) = x^2 \quad \text{for } x < 0. \] ### Step 3: Calculate \( f_3(x) \) for \( x \geq 0 \) For \( x \geq 0 \): - We have \( f_1(x) = e^x \). - Therefore, \( f_2(f_1(x)) = f_2(e^x) = (e^x)^2 = e^{2x} \). Thus, \[ f_3(x) = f_2(f_1(x)) - 1 = e^{2x} - 1 \quad \text{for } x \geq 0. \] ### Step 4: Combine the results Now we can write the complete definition of \( f_3(x) \): \[ f_3(x) = \begin{cases} x^2 & \text{if } x < 0 \\ e^{2x} - 1 & \text{if } x \geq 0 \end{cases} \] ### Final Answer Thus, the function \( f_3(x) \) is: \[ f_3(x) = \begin{cases} x^2 & \text{if } x < 0 \\ e^{2x} - 1 & \text{if } x \geq 0 \end{cases} \] ---

To find the function \( f_3(x) \), we will analyze the given functions step by step. ### Step 1: Define the functions 1. **Function \( f_1(x) \)**: \[ f_1(x) = \begin{cases} ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 19

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let f_(1):R to R, f_(2):[0,oo) to R, f_(3):R to R and f_(4):R to [0,oo) be a defined by f_(1)(x)={{:(,|x|,"if "x lt 0),(,e^(x),"if "x gt 0):}:f_(2)(x)=x^(2),f_(3)(x)={{:(,sin x,"if x"lt 0),(,x,"if "x ge 0):} and f_(4)(x)={{:(,f_(2)(f_(1)(x)),"if "x lt 0),(,f_(2)(f_(1)(f_(1)(x)))-1,"if "x ge 0):} then f_(2) of f_(1) is

Let f_(1):R to R, f_(2):[0,oo) to R, f_(3):R to R and f_(4):R to [0,oo) be a defined by f_(1)(x)={{:(,|x|,"if "x lt 0),(,e^(x),"if "x gt 0):}:f_(2)(x)=x^(2),f_(3)(x)={{:(,sin x,"if x"lt 0),(,x,"if "x ge 0):} and f_(4)(x)={{:(,f_(2)(f_(1)(x)),"if "x lt 0),(,f_(2)(f_(1)(f_(1)(x)))-1,"if "x ge 0):} then f_(2) is

Let f(1):R to R, f_(2):[0,oo) to R, f_(3):R to R and f_(4):R to [0,oo) be a defined by f_(1)(x)={{:(,|x|,"if "x lt 0),(,e^(x),"if "x gt 0):}:f_(2)(x)=x^(2),f_(3)(x)={{:(,sin x,"if x"lt 0),(,x,"if "x ge 0):} and f_(4)(x)={{:(,f_(2)(f_(1)(x)),"if "x lt 0),(,f_(2)(f_(1)(f_(1)(x)))-1,"if "x ge 0):} Then, f_(4) is

Let f:R to R be a function defined b f(x)=cos(5x+2). Then,f is

Let f:R to R be the function defined by f(x)=2x-3, AA x in R. Write f^(-1).

Let f : R to R be a function defined as f(x) = {((b + 2)x-11c, x 2):} then f(x)is:

Let f:R rarr R be a function defined as f(x)=(x^(2)-6)/(x^(2)+2) , then f is

The function f:R→R defined by f(x)=(x−1)(x−2)(x−3) is

Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2) . Then f is

If f:R rarr R be a function defined as f(x)=(x^(2)-8)/(x^(2)+2) , then f is