Home
Class 12
MATHS
lim(x to 0) (sin x + cos 3x)^(2//x) =...

`lim_(x to 0) (sin x + cos 3x)^(2//x)` =

A

1

B

`e^2`

C

`e^(2//3)`

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} ( \sin x + \cos 3x )^{\frac{2}{x}} \), we will follow these steps: ### Step 1: Define the limit Let: \[ y = \lim_{x \to 0} ( \sin x + \cos 3x )^{\frac{2}{x}} \] ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we have: \[ \ln y = \lim_{x \to 0} \frac{2}{x} \ln( \sin x + \cos 3x ) \] ### Step 3: Analyze the limit As \( x \to 0 \): - \( \sin x \to 0 \) - \( \cos 3x \to 1 \) Thus: \[ \sin x + \cos 3x \to 0 + 1 = 1 \] This means \( \ln( \sin x + \cos 3x ) \to \ln(1) = 0 \). Therefore, we have a \( \frac{0}{0} \) form, which allows us to apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule We need to differentiate the numerator and denominator: \[ \ln y = \lim_{x \to 0} \frac{2 \ln( \sin x + \cos 3x )}{x} \] Differentiating the numerator: \[ \text{Numerator: } \frac{d}{dx} [2 \ln( \sin x + \cos 3x )] = 2 \cdot \frac{1}{\sin x + \cos 3x} \cdot (\cos x - 3 \sin 3x) \] Differentiating the denominator: \[ \text{Denominator: } \frac{d}{dx} [x] = 1 \] Thus, applying L'Hôpital's Rule gives: \[ \ln y = \lim_{x \to 0} \frac{2(\cos x - 3 \sin 3x)}{\sin x + \cos 3x} \] ### Step 5: Evaluate the limit Now we evaluate this limit as \( x \to 0 \): - \( \cos(0) = 1 \) - \( \sin(0) = 0 \) - \( \cos(3 \cdot 0) = 1 \) - \( \sin(3 \cdot 0) = 0 \) Substituting these values: \[ \ln y = \frac{2(1 - 0)}{0 + 1} = 2 \] ### Step 6: Solve for \( y \) Now we can solve for \( y \): \[ \ln y = 2 \implies y = e^2 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} ( \sin x + \cos 3x )^{\frac{2}{x}} = e^2 \]

To solve the limit \( \lim_{x \to 0} ( \sin x + \cos 3x )^{\frac{2}{x}} \), we will follow these steps: ### Step 1: Define the limit Let: \[ y = \lim_{x \to 0} ( \sin x + \cos 3x )^{\frac{2}{x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 19

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : Lim_(x to 0) (sin x cos x)/(3x)

lim_(x->0) (sin x /x)

Evaluate the following limits : Lim_(x to 0) (sin 3x cos 2x)/(sin 2x)

Evaluate the following limits : Lim_(x to 0) (sin 2x (1- cos 2x))/(x^(3))

Evaluate the following limits : lim_(x to 0) (sin 2x + sin 6x)/(sin 5x - sin 3x)

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

lim_(x to 0) (cos 2x-1)/(cos x-1)

Evaluate the following limits : Lim_(x to 0 ) (3 sin x - sin 3x)/(x^(3))

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

{:("Column-I","Column-II"),(A.lim_(x to 0) (cos x - cos3x)/(x("Sin"x - "sin"3x)),p. 3),(B.lim_(x to 0) ("sin" 4x)/(tan 2x),q. -2),(C. lim_(x to oo) (x^(4) + 2x^(3) + 3)/(2x^(4) - x + 2),r.(1)/(2)),(D.lim_(x to 2) (sqrt(3x^(2) + 3x - 9) - sqrt(3x + 3))/(x - 2),s. 2):}