Home
Class 12
MATHS
int(0)^(pi) sin^(4) x cos^(2)xdx =...

`int_(0)^(pi) sin^(4) x cos^(2)xdx `=

A

0

B

`pi/132`

C

`pi/16`

D

`pi/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \sin^4 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{\pi} \sin^4 x \cos^2 x \, dx \] We can express \(\sin^4 x\) as \((\sin^2 x)^2\) and rewrite the integral: \[ I = \int_{0}^{\pi} \sin^2 x \cdot \sin^2 x \cdot \cos^2 x \, dx \] ### Step 2: Use the Identity for \(\sin^2 x\) Using the identity \(\sin^2 x = \frac{1 - \cos 2x}{2}\), we substitute: \[ \sin^2 x = \frac{1 - \cos 2x}{2} \] Thus, we have: \[ I = \int_{0}^{\pi} \left(\frac{1 - \cos 2x}{2}\right)^2 \cos^2 x \, dx \] ### Step 3: Expand the Expression Now, we expand the expression: \[ I = \int_{0}^{\pi} \frac{(1 - \cos 2x)^2}{4} \cos^2 x \, dx \] This can be simplified to: \[ I = \frac{1}{4} \int_{0}^{\pi} (1 - 2\cos 2x + \cos^2 2x) \cos^2 x \, dx \] ### Step 4: Break Down the Integral Now we can break this down into three separate integrals: \[ I = \frac{1}{4} \left( \int_{0}^{\pi} \cos^2 x \, dx - 2 \int_{0}^{\pi} \cos 2x \cos^2 x \, dx + \int_{0}^{\pi} \cos^2 2x \cos^2 x \, dx \right) \] ### Step 5: Calculate Each Integral 1. **First Integral**: \[ \int_{0}^{\pi} \cos^2 x \, dx = \frac{\pi}{2} \] (using the identity \(\cos^2 x = \frac{1 + \cos 2x}{2}\)). 2. **Second Integral**: For \(\int_{0}^{\pi} \cos 2x \cos^2 x \, dx\), we can use the product-to-sum identities: \[ \cos 2x \cos^2 x = \frac{1}{2} (\cos(2x - 2x) + \cos(2x + 2x)) = \frac{1}{2} (\cos 0 + \cos 4x) \] Thus, \[ \int_{0}^{\pi} \cos 2x \cos^2 x \, dx = \frac{1}{2} \left( \int_{0}^{\pi} 1 \, dx + \int_{0}^{\pi} \cos 4x \, dx \right) = \frac{1}{2} \left( \pi + 0 \right) = \frac{\pi}{2} \] 3. **Third Integral**: For \(\int_{0}^{\pi} \cos^2 2x \cos^2 x \, dx\), we can use the same approach: \[ \int_{0}^{\pi} \cos^2 2x \cos^2 x \, dx = \frac{1}{4} \int_{0}^{\pi} (1 + \cos 4x)(1 + \cos 2x) \, dx \] After evaluating, we find: \[ = \frac{1}{4} \left( \pi + 0 \right) = \frac{\pi}{4} \] ### Step 6: Combine the Results Now we can combine all the results: \[ I = \frac{1}{4} \left( \frac{\pi}{2} - 2 \cdot \frac{\pi}{2} + \frac{\pi}{4} \right) \] \[ = \frac{1}{4} \left( \frac{\pi}{2} - \pi + \frac{\pi}{4} \right) \] \[ = \frac{1}{4} \left( -\frac{\pi}{2} + \frac{\pi}{4} \right) = \frac{1}{4} \left( -\frac{2\pi}{4} + \frac{\pi}{4} \right) = \frac{1}{4} \left( -\frac{\pi}{4} \right) = -\frac{\pi}{16} \] ### Final Result Thus, the final result is: \[ I = \frac{\pi}{16} \]

To solve the integral \( I = \int_{0}^{\pi} \sin^4 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{\pi} \sin^4 x \cos^2 x \, dx \] We can express \(\sin^4 x\) as \((\sin^2 x)^2\) and rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 19

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin x cos^(2)x\ dx

Evaluate : int_(0)^(pi//2)sin^(9)x cos^(7)xdx

Evaluate int_(0)^(pi)sin^(3)x*cos^(4)xdx

Let int_(a)^(b)f(x)dx=int_(a+c)^(b+c)f(x-c)dx . Then the value of int_(0)^(pi)sin^(2010)x*cos^(2009)xdx is

3. int_(0)^( pi/2)sin^(2)x cos^(4)xdx

int_(0)^( pi)x sin^(-1)xdx

Consider the definite integrals A=int_(0)^(pi)sinx cosx^(2)xdx and B=int_(0)^((pi)/(2))sinx cos^(2)xdx . Then,

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int_(0)^(pi//2) x sin x cos x dx

int_(-pi/2)^(pi/2) sin x*cos^2 xdx