Home
Class 12
MATHS
Let A = [(1,0),(2,3)] and A^(n) = [(a, b...

Let `A = [(1,0),(2,3)] and A^(n) = [(a, b),(c,d)]` then `lim_(n to oo) (b + c)/(a + d)` =

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit as \( n \) approaches infinity of the expression \( \frac{b + c}{a + d} \) where \( A^n = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) for the matrix \( A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot 2 = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 3 = 0 \) - Second row, first column: \( 2 \cdot 1 + 3 \cdot 2 = 2 + 6 = 8 \) - Second row, second column: \( 2 \cdot 0 + 3 \cdot 3 = 0 + 9 = 9 \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 8 & 9 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 0 \\ 8 & 9 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 0 \cdot 2 = 1 \) - First row, second column: \( 1 \cdot 0 + 0 \cdot 3 = 0 \) - Second row, first column: \( 8 \cdot 1 + 9 \cdot 2 = 8 + 18 = 26 \) - Second row, second column: \( 8 \cdot 0 + 9 \cdot 3 = 0 + 27 = 27 \) Thus, we have: \[ A^3 = \begin{pmatrix} 1 & 0 \\ 26 & 27 \end{pmatrix} \] ### Step 3: Identify the Pattern From our calculations, we can observe a pattern: - The first row remains \( (1, 0) \). - The second row seems to follow a pattern related to powers of 3. We can conjecture that: \[ A^n = \begin{pmatrix} 1 & 0 \\ 3^{n-1} \cdot 2 & 3^n \end{pmatrix} \] ### Step 4: Identify \( a, b, c, d \) From the matrix \( A^n \), we identify: - \( a = 1 \) - \( b = 0 \) - \( c = 2 \cdot 3^{n-1} \) - \( d = 3^n \) ### Step 5: Calculate \( \frac{b + c}{a + d} \) Now we compute: \[ \frac{b + c}{a + d} = \frac{0 + 2 \cdot 3^{n-1}}{1 + 3^n} \] This simplifies to: \[ \frac{2 \cdot 3^{n-1}}{1 + 3^n} \] ### Step 6: Simplify the Limit as \( n \to \infty \) As \( n \to \infty \): \[ \frac{2 \cdot 3^{n-1}}{1 + 3^n} = \frac{2 \cdot 3^{n-1}}{3^n(1/3^n + 1)} = \frac{2}{3(1/3^n + 1)} \] As \( n \to \infty \), \( \frac{1}{3^n} \to 0 \): \[ \frac{2}{3(0 + 1)} = \frac{2}{3} \] ### Final Answer Thus, the limit is: \[ \lim_{n \to \infty} \frac{b + c}{a + d} = \frac{2}{3} \]

To solve the problem, we need to find the limit as \( n \) approaches infinity of the expression \( \frac{b + c}{a + d} \) where \( A^n = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) for the matrix \( A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 19

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If A= [(1,0),(1,1)] then (A) A^-n=[(1,0),(-n,1)] , n epsilon N (B) lim_(n rarr 00)1/n^2 A^-n = [(0,0),(0,0)] (C) lim_(nrarroo)1/n A^-n = [(0,0),(-1,0)] (D) none of these

Let a and b be two real numbers such that a > 1, b >1. If A=((a,0),(0,b)), then (lim)_(n->oo) A^-n is (a) unit matrix (b) null matrix (c) 2I (d) non of these

If I_n=int_0^(sqrt(3))(dx)/(1+x^n),(n=1,2,3. .), then find the value of ("lim")_(n to oo)I_ndot (a)0 (b) 1 (c) 2 (d) 1/2

If alpha, beta be the roots of ax^(2)+bx+c=0(a, b, c in R), (c )/(a)lt 1 and b^(2)-4ac lt 0, f(n)= sum_(r=1)^(n)|alpha|^(r )+|beta|^(r ) , then lim_(n to oo)f(n) is equal to

If A=[(n,0 ,0),( 0,n,0),( 0, 0,n)] and B=[(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)] , then A B is equal to (A) B (B) n B (C) B^n (D) A+B

f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) pi)/n, ( n>1, n in N) then lim_(n rarr oo) f(n)/n^2 is equal to (A) 1/2 (B) 1/3 (C) 2/3 (D) 1

Let A = N xx N and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Show that * is commutative.

Let A={a , b , c , d}a n df: AvecA be given by f={(a , b),(b , d),(c , a),(d , c)}, write f^(-1)dot

If sum_(r=1)^n r(r+1)(2r+3)=a n^4+b n^3+c n^2+d n+e , then (a) a-b=d-c (b) e=0 (c) a , b-2//3, c-1 are in A.P. (d) (b+d)//a is an integer

Let aa n db be two real numbers such that a >1,b > 1. If A=(a0 0b) , then (lim)_(nvecoo)A^(-n) is a. unit matrix b. null matrix c. 2l d. none of these