Home
Class 12
MATHS
The least positive integer n for which ...

The least positive integer n for which `""^(n-1)C_(5)+""^(n-1)C_(6) lt ""^(n)C_(7)` is

A

14

B

15

C

16

D

28

Text Solution

AI Generated Solution

The correct Answer is:
To find the least positive integer \( n \) for which \[ \binom{n-1}{5} + \binom{n-1}{6} < \binom{n}{7}, \] we will follow these steps: ### Step 1: Write the Binomial Coefficients Using the formula for binomial coefficients, we can express the left-hand side: \[ \binom{n-1}{5} = \frac{(n-1)!}{5!(n-1-5)!} = \frac{(n-1)!}{5!(n-6)!} \] \[ \binom{n-1}{6} = \frac{(n-1)!}{6!(n-1-6)!} = \frac{(n-1)!}{6!(n-7)!} \] The right-hand side is: \[ \binom{n}{7} = \frac{n!}{7!(n-7)!} \] ### Step 2: Combine the Left-Hand Side Now we can combine the left-hand side: \[ \binom{n-1}{5} + \binom{n-1}{6} = \frac{(n-1)!}{5!(n-6)!} + \frac{(n-1)!}{6!(n-7)!} \] Factoring out \( (n-1)! \): \[ = (n-1)! \left( \frac{1}{5!(n-6)!} + \frac{1}{6!(n-7)!} \right) \] ### Step 3: Simplify the Left-Hand Side We can rewrite the second term: \[ \frac{1}{6!(n-7)!} = \frac{1}{6} \cdot \frac{1}{5!(n-7)!} \] Thus, we have: \[ = (n-1)! \left( \frac{(n-7) + 1}{6 \cdot 5!(n-7)!} \right) = (n-1)! \left( \frac{n-6}{6 \cdot 5!(n-7)!} \right) \] ### Step 4: Rewrite the Right-Hand Side Now, we rewrite the right-hand side: \[ \binom{n}{7} = \frac{n \cdot (n-1)!}{7!(n-7)!} \] ### Step 5: Set Up the Inequality Now we can set up the inequality: \[ (n-1)! \left( \frac{n-6}{6 \cdot 5!(n-7)!} \right) < \frac{n \cdot (n-1)!}{7!(n-7)!} \] ### Step 6: Cancel Common Terms We can cancel \( (n-1)! \) and \( (n-7)! \) from both sides (assuming \( n > 7 \)): \[ \frac{n-6}{6 \cdot 5!} < \frac{n}{7!} \] ### Step 7: Cross Multiply Cross-multiplying gives: \[ 7! (n-6) < 6 \cdot 5! n \] ### Step 8: Simplify Calculating \( 7! = 5040 \) and \( 6 \cdot 5! = 720 \): \[ 5040(n-6) < 720n \] Expanding and simplifying: \[ 5040n - 30240 < 720n \] \[ 5040n - 720n < 30240 \] \[ 4320n < 30240 \] \[ n < \frac{30240}{4320} = 7 \] ### Step 9: Solve for n Since we are looking for the least positive integer \( n \) such that the original inequality holds, we need to check integer values starting from 8 upwards. ### Step 10: Check Values Testing \( n = 14 \): \[ \binom{13}{5} + \binom{13}{6} < \binom{14}{7} \] Calculating: \[ \binom{13}{5} = 1287, \quad \binom{13}{6} = 1716, \quad \binom{14}{7} = 3432 \] Thus, \[ 1287 + 1716 = 3003 < 3432 \] This holds true. ### Conclusion The least positive integer \( n \) for which the inequality holds is: \[ \boxed{14} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise LEVEL-2|88 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos
  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • PROBABILITY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|102 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

If m,n,r are positive integers such that r lt m,n, then ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+...+ ""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals

For all positive integers n , show that \ ^(2n)C_n+\ ^(2n)C_(n-1)=1/2(\ ^(2n+2)C_(n+1)) .

For all positive integers n , show that \ ^(2n)C_n+\ ^(2n)C_(n-1)=1/2(\ ^(2n+2)C_(n+1)) .

If .^(n)C_(5) = .^(n)C_(7) , then find .^(n)P_(3)

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

The number of positive intergers satisfying the in-equality ""^(n+1)C_(n-2)-""^(n+1)C_(n-1)le100 , is

The least value of natural number n such that ((n-1),(5))+((n-1),(6))lt((n),(7))," where"((n),(r))=(n!)/((n-r)!r!),is

If (n-1) C_6 + (n-1)C_7 > nC_6 then

The least positive integer n such that ((2i)/(1+i))^n is a positive integer is a. 16 b. 8 c. 4 d. 2

VMC MODULES ENGLISH-PERMUTATION & COMBINATION-LEVEL-1
  1. Six identical coins are arranged in a row. The total number of ways in...

    Text Solution

    |

  2. How many numbers greater than 1000, but not greater than 4000 can be ...

    Text Solution

    |

  3. The least positive integer n for which ""^(n-1)C(5)+""^(n-1)C(6) lt "...

    Text Solution

    |

  4. the exponent of 15 in 100!, is

    Text Solution

    |

  5. The number of ways to select 2 numbers from {0, 1, 2, 3, 4} such that ...

    Text Solution

    |

  6. If A={x|x is prime number and x<30}, find the number of different rati...

    Text Solution

    |

  7. The number of six digit numbers that can be form from the digit 1,2,3,...

    Text Solution

    |

  8. Eight chairs are numbered 1 to 8. Two women and three men wish to oc...

    Text Solution

    |

  9. The number of four-digit numbers that can be made with the digits 1...

    Text Solution

    |

  10. A variable name in certain computer language must be either an alph...

    Text Solution

    |

  11. The number of diagonals of a polygon of 15 sides is:

    Text Solution

    |

  12. Find the value of ""^(47)C4+ underset (r=1) overset( 5) sum ""^(52-r...

    Text Solution

    |

  13. Write the expression \ ^n C(r+1)+\ ^n C(r-1)+2xx\ ^n Cr in the simples...

    Text Solution

    |

  14. The range of function f(x)=^(7-x)P(x-3)i s {1,2,3} (b) {1,2,3,4,5,...

    Text Solution

    |

  15. The solution set of .^(10)C(x-1) gt 2.^(10)C(x) is

    Text Solution

    |

  16. If (1)/(""^(4)C(n))=(1)/(""^(5)C(n))+(1)/(""^(6)C(n)), then value of n...

    Text Solution

    |

  17. The least value of natural number n such that ((n-1),(5))+((n-1),(6))l...

    Text Solution

    |

  18. Letters of the word INDIANOIL are arranged in all possible ways. The n...

    Text Solution

    |

  19. The number of ways of arranging 20 boys so that 3 particular boys are ...

    Text Solution

    |

  20. How many ways are there to arrange the letters in the word GARDEN with...

    Text Solution

    |