Home
Class 12
MATHS
If (1)/(""^(4)C(n))=(1)/(""^(5)C(n))+(1)...

If `(1)/(""^(4)C_(n))=(1)/(""^(5)C_(n))+(1)/(""^(6)C_(n))`, then value of n is:

A

3

B

4

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1}{\binom{4}{n}} = \frac{1}{\binom{5}{n}} + \frac{1}{\binom{6}{n}}\), we will follow these steps: ### Step 1: Rewrite the Binomial Coefficients Recall the formula for binomial coefficients: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Using this, we can express the equation as: \[ \frac{1}{\binom{4}{n}} = \frac{n!(4-n)!}{4!} \] \[ \frac{1}{\binom{5}{n}} = \frac{n!(5-n)!}{5!} \] \[ \frac{1}{\binom{6}{n}} = \frac{n!(6-n)!}{6!} \] ### Step 2: Substitute into the Equation Substituting these into the original equation gives us: \[ \frac{n!(4-n)!}{4!} = \frac{n!(5-n)!}{5!} + \frac{n!(6-n)!}{6!} \] ### Step 3: Cancel \(n!\) Since \(n!\) is common in all terms, we can cancel it out (assuming \(n! \neq 0\)): \[ \frac{(4-n)!}{4!} = \frac{(5-n)!}{5!} + \frac{(6-n)!}{6!} \] ### Step 4: Rewrite Factorials We can rewrite \(5!\) and \(6!\) in terms of \(4!\): \[ \frac{(4-n)!}{4!} = \frac{(5-n)(4-n)!}{5 \cdot 4!} + \frac{(6-n)(5-n)(4-n)!}{6 \cdot 5 \cdot 4!} \] Cancelling \((4-n)!\) gives: \[ \frac{1}{4!} = \frac{5-n}{5 \cdot 4!} + \frac{(6-n)(5-n)}{6 \cdot 5 \cdot 4!} \] ### Step 5: Multiply through by \(4! \cdot 30\) (LCM) Multiply through by \(30\) to eliminate the denominators: \[ 30 = 6(5-n) + (6-n)(5-n) \] ### Step 6: Expand and Simplify Expanding the right side: \[ 30 = 30 - 6n + 30 - 11n + n^2 \] Combine like terms: \[ 0 = n^2 - 17n + 30 \] ### Step 7: Factor the Quadratic Factoring gives: \[ (n - 15)(n - 2) = 0 \] Thus, \(n = 15\) or \(n = 2\). ### Step 8: Check Validity Since \(n\) must be less than or equal to \(4\) (as \(n\) is the lower index in the binomial coefficient), we discard \(n = 15\) and accept \(n = 2\). ### Final Answer Thus, the value of \(n\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise LEVEL-2|88 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos
  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • PROBABILITY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|102 Videos

Similar Questions

Explore conceptually related problems

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

If S_(n) = (.^(n)C_(0))^(2) + (.^(n)C_(1))^(2) + (.^(n)C_(n))^(n) , then maximum value of [(S_(n+1))/(S_(n))] is "_____" . (where [*] denotes the greatest integer function)

If C_(r) = ""^(n)C_(r) and (C_(0) + C_(1)) (C_(1) + C_(2)) … (C_(n-1) + C_(n)) = k ((n +1)^(n))/(n!) , then the value of k, is

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

If .^(n)C_(4),.^(n)C_(5), .^(n)C_(6) are in A.P., then find the value of n.

if n>=2, ""^(n+1)C_(2)+2(""^(2)C_(2)+""^(3)C_(2)+""^(4)C_(2)+....+""^(n)C_(2)) Value is:-

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is (a) 7 (b) 5 (c) 6 (d) 9

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

Let S_(n)=""^(n)C_(0)""^(n)C_(1)+""^(n)C_(1)""^(n)C_(2)+…..+""^(n)C_(n-1)""^(n)C_(n). "If" (S_(n+1))/(S_(n))=(15)/(4) , find the sum of all possible values of n (n in N)

if (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n) , then prove that (.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))= Sum of first n natural numbers.

VMC MODULES ENGLISH-PERMUTATION & COMBINATION-LEVEL-1
  1. The range of function f(x)=^(7-x)P(x-3)i s {1,2,3} (b) {1,2,3,4,5,...

    Text Solution

    |

  2. The solution set of .^(10)C(x-1) gt 2.^(10)C(x) is

    Text Solution

    |

  3. If (1)/(""^(4)C(n))=(1)/(""^(5)C(n))+(1)/(""^(6)C(n)), then value of n...

    Text Solution

    |

  4. The least value of natural number n such that ((n-1),(5))+((n-1),(6))l...

    Text Solution

    |

  5. Letters of the word INDIANOIL are arranged in all possible ways. The n...

    Text Solution

    |

  6. The number of ways of arranging 20 boys so that 3 particular boys are ...

    Text Solution

    |

  7. How many ways are there to arrange the letters in the word GARDEN with...

    Text Solution

    |

  8. The number of arrangements of the letters of the word BANANA in whic...

    Text Solution

    |

  9. In how many ways can 21 identical English and 19 identical Hindi books...

    Text Solution

    |

  10. In how many ways four '+ and five '-' sign can be arranged in a circl...

    Text Solution

    |

  11. The number of ways in which two teams A and B of 11 players each can b...

    Text Solution

    |

  12. how many different nine digit numbers can be formed from the number 2...

    Text Solution

    |

  13. The number of ways in which the letters of the word ARRANGE be arrange...

    Text Solution

    |

  14. We are required to form different words with the help of the word INTE...

    Text Solution

    |

  15. In a group of 8 girls, two girls are sisters. The number of ways in wh...

    Text Solution

    |

  16. The number of words that can be formed by using the letters of the wor...

    Text Solution

    |

  17. Find the total number of permutations of n different things taken not ...

    Text Solution

    |

  18. The number of words of four letters containing equal number of vowe...

    Text Solution

    |

  19. Number of ways in which 15 identical coins can be put into 6 different...

    Text Solution

    |

  20. 5 letters can be posted into 3 letter boxes in:

    Text Solution

    |