Home
Class 12
MATHS
The least value of natural number n such...

The least value of natural number n such that `((n-1),(5))+((n-1),(6))lt((n),(7))," where"((n),(r))=(n!)/((n-r)!r!),is `

A

11

B

10

C

12

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the least value of the natural number \( n \) such that: \[ \binom{n-1}{5} + \binom{n-1}{6} < \binom{n}{7} \] where \( \binom{n}{r} = \frac{n!}{(n-r)!r!} \). ### Step-by-Step Solution: 1. **Express the Binomial Coefficients**: Using the formula for binomial coefficients, we can express the left-hand side and the right-hand side as follows: \[ \binom{n-1}{5} = \frac{(n-1)!}{5!(n-6)!} \] \[ \binom{n-1}{6} = \frac{(n-1)!}{6!(n-7)!} \] \[ \binom{n}{7} = \frac{n!}{7!(n-7)!} \] 2. **Combine the Left-Hand Side**: The left-hand side becomes: \[ \frac{(n-1)!}{5!(n-6)!} + \frac{(n-1)!}{6!(n-7)!} \] To combine these, we can factor out \( (n-1)! \): \[ (n-1)! \left( \frac{1}{5!(n-6)!} + \frac{1}{6!(n-7)!} \right) \] The second term can be rewritten as: \[ \frac{1}{6!(n-7)!} = \frac{1}{6} \cdot \frac{1}{5!(n-7)!} \] Thus, we have: \[ (n-1)! \left( \frac{1}{5!(n-6)!} + \frac{1}{6} \cdot \frac{1}{5!(n-7)!} \right) \] 3. **Simplify the Left-Hand Side**: We can simplify further: \[ = (n-1)! \left( \frac{(n-7) + \frac{1}{6}}{6 \cdot 5!(n-7)!} \right) \] This results in: \[ = \frac{(n-1)!}{5!(n-7)!} \left( \frac{n-6}{6} \right) \] 4. **Right-Hand Side**: The right-hand side can be expressed as: \[ \binom{n}{7} = \frac{n \cdot (n-1)!}{7!(n-7)!} \] 5. **Set Up the Inequality**: Now we can set up the inequality: \[ \frac{(n-1)!}{5!(n-7)!} \cdot \frac{n-6}{6} < \frac{n \cdot (n-1)!}{7!(n-7)!} \] 6. **Cancel Common Terms**: Cancel \( (n-1)! \) and \( (n-7)! \) from both sides: \[ \frac{n-6}{6 \cdot 5!} < \frac{n}{7!} \] 7. **Cross Multiply**: Cross-multiply to eliminate the fractions: \[ 7! (n-6) < 6 \cdot 5! n \] Simplifying gives: \[ 5040(n-6) < 720n \] 8. **Rearrange the Inequality**: Rearranging leads to: \[ 5040n - 30240 < 720n \] \[ 5040n - 720n < 30240 \] \[ 4320n < 30240 \] \[ n < \frac{30240}{4320} = 7 \] 9. **Find the Least Natural Number**: The inequality \( n > 13 \) gives us the least natural number \( n = 14 \). ### Final Answer: The least value of the natural number \( n \) that satisfies the inequality is: \[ \boxed{14} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise LEVEL-2|88 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos
  • PERMUTATION & COMBINATION

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|50 Videos
  • MOCK TEST 9

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • PROBABILITY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|102 Videos

Similar Questions

Explore conceptually related problems

Prove that ((n),(r))+2((n),(r-1))+((n),(r-2))=((n+2),(r))

The least positive integer n for which ""^(n-1)C_(5)+""^(n-1)C_(6) lt ""^(n)C_(7) is

If n is an even natural number , then sum_(r=0)^(n) (( -1)^(r))/(""^(n)C_(r)) equals

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that: n(n-1)(n-2)....(n-r+1)=(n !)/((n-r)!)

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

For 2<=r<=n,((n),(r))+2((n),(r-1))+((n),(r-2)) is equal to

Prove that: (i) (.^(n)P_(r))/(.^(n)P_(r-2)) = (n-r+1) (n-r+2)

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

VMC MODULES ENGLISH-PERMUTATION & COMBINATION-LEVEL-1
  1. The solution set of .^(10)C(x-1) gt 2.^(10)C(x) is

    Text Solution

    |

  2. If (1)/(""^(4)C(n))=(1)/(""^(5)C(n))+(1)/(""^(6)C(n)), then value of n...

    Text Solution

    |

  3. The least value of natural number n such that ((n-1),(5))+((n-1),(6))l...

    Text Solution

    |

  4. Letters of the word INDIANOIL are arranged in all possible ways. The n...

    Text Solution

    |

  5. The number of ways of arranging 20 boys so that 3 particular boys are ...

    Text Solution

    |

  6. How many ways are there to arrange the letters in the word GARDEN with...

    Text Solution

    |

  7. The number of arrangements of the letters of the word BANANA in whic...

    Text Solution

    |

  8. In how many ways can 21 identical English and 19 identical Hindi books...

    Text Solution

    |

  9. In how many ways four '+ and five '-' sign can be arranged in a circl...

    Text Solution

    |

  10. The number of ways in which two teams A and B of 11 players each can b...

    Text Solution

    |

  11. how many different nine digit numbers can be formed from the number 2...

    Text Solution

    |

  12. The number of ways in which the letters of the word ARRANGE be arrange...

    Text Solution

    |

  13. We are required to form different words with the help of the word INTE...

    Text Solution

    |

  14. In a group of 8 girls, two girls are sisters. The number of ways in wh...

    Text Solution

    |

  15. The number of words that can be formed by using the letters of the wor...

    Text Solution

    |

  16. Find the total number of permutations of n different things taken not ...

    Text Solution

    |

  17. The number of words of four letters containing equal number of vowe...

    Text Solution

    |

  18. Number of ways in which 15 identical coins can be put into 6 different...

    Text Solution

    |

  19. 5 letters can be posted into 3 letter boxes in:

    Text Solution

    |

  20. find the number of ways in which a mixed double game can be arranged f...

    Text Solution

    |