Home
Class 12
MATHS
The value of (b-c)/r1+ (c-a)/r2+ (a-b)/r...

The value of `(b-c)/r_1+ (c-a)/r_2+ (a-b)/r_3` is equal to

A

ab

B

bc

C

ca

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \((b-c)/r_1 + (c-a)/r_2 + (a-b)/r_3\), we will use the formulas for the exradii of a triangle and some algebraic manipulation. Here’s a step-by-step solution: ### Step 1: Understand the Exradii The exradii \(r_1\), \(r_2\), and \(r_3\) are defined as: - \(r_1 = \frac{\Delta}{s - a}\) - \(r_2 = \frac{\Delta}{s - b}\) - \(r_3 = \frac{\Delta}{s - c}\) where \(\Delta\) is the area of the triangle and \(s\) is the semi-perimeter given by \(s = \frac{a + b + c}{2}\). ### Step 2: Substitute Exradii into the Expression Substituting the values of \(r_1\), \(r_2\), and \(r_3\) into the original expression, we have: \[ \frac{b - c}{r_1} + \frac{c - a}{r_2} + \frac{a - b}{r_3} = \frac{(b - c)(s - a)}{\Delta} + \frac{(c - a)(s - b)}{\Delta} + \frac{(a - b)(s - c)}{\Delta} \] ### Step 3: Combine the Terms Since \(\Delta\) is common in the denominator, we can combine the numerators: \[ = \frac{1}{\Delta} \left( (b - c)(s - a) + (c - a)(s - b) + (a - b)(s - c) \right) \] ### Step 4: Expand the Numerators Now, we will expand each term in the numerator: 1. \((b - c)(s - a) = (b - c)(\frac{a + b + c}{2} - a) = (b - c)(\frac{b + c - a}{2})\) 2. \((c - a)(s - b) = (c - a)(\frac{b + c + a}{2} - b) = (c - a)(\frac{c + a - b}{2})\) 3. \((a - b)(s - c) = (a - b)(\frac{a + b + c}{2} - c) = (a - b)(\frac{a + b - c}{2})\) ### Step 5: Combine and Simplify Now, we will combine all these expanded terms: \[ = \frac{1}{\Delta} \left( \frac{(b - c)(b + c - a) + (c - a)(c + a - b) + (a - b)(a + b - c)}{2} \right) \] ### Step 6: Analyze the Expression Notice that each pair of terms will cancel out when we combine them: - The terms \(b - c\), \(c - a\), and \(a - b\) will lead to cancellations due to symmetry. Thus, when we simplify the entire expression, we find that: \[ = \frac{0}{\Delta} = 0 \] ### Conclusion The value of the expression \((b-c)/r_1 + (c-a)/r_2 + (a-b)/r_3\) is equal to **0**. ---
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise Level - 2|55 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|35 Videos
  • PROBABILITY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|102 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive )|20 Videos

Similar Questions

Explore conceptually related problems

value of the expression (b-c)/(r_(1))+(c-a)/r_(2)+(a-b)/r_(3) is equal to

In any triangle, the minimum value of r_1r_2r_3//r^3 is equal to (a) 1 (b) 9 (c) 27 (d) none of these

Show that (b-c)/(r _(1))+ (c-a)/(r _(2))+(a-b)/(r _(3)) =0

In a triangle A B C ,\ (r_1-r)(r_2-r)(r_3-r) is equal to 4R r^2 (b) (4a b cdot)/((a+b+c)^2) 16 R^3(cos A+cos B+cos C-1) r^3cose c A/2cose c B/2cose c C/2

If in triangle ABC (r)/(r_(1))=(1)/(2), then the value of tan(A/2)(tan(B/2)+tan(C/2)) is equal to

If r_(1), r_(2) ,r_(3) are the ex-radii of DeltaABC, then prove that (bc)/(r_(1))+(ca)/(r _(2))+(ab)/(r _(3))=2R [((a)/(b)+(b)/a)+((b)/(c)+(c)/(b))+((c)/(a)+ (a)/(c))-3]

With usual notation in Delta ABC, the numerical value of ((a+b+c)/(r_(1)+r_(2)+r_(3))) ((a)/(r_(1))+(b)/(r _(2))+ (c)/(r_(3))) is

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

Statement - I : In any triangle A B C , the minimum values of (r_1+r_2+r_3)/r is 9 Because : Statement - II : For any three number A MgeqG M A (b) B (c) C (d) D

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

VMC MODULES ENGLISH-PROPERTIES OF TRIANGLE-JEE Advanced (Archive)
  1. The value of (b-c)/r1+ (c-a)/r2+ (a-b)/r3 is equal to

    Text Solution

    |

  2. If the angles A, B and C of a triangle are in an arithmetic progressio...

    Text Solution

    |

  3. In a Delta ABC, among the following which one is ture ?

    Text Solution

    |

  4. The side of a triangle are in the ratio 1 : sqrt3:2, then the angles o...

    Text Solution

    |

  5. If the angles of a triangle are in the ratio 4:1:1, then the ratio of ...

    Text Solution

    |

  6. In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

    Text Solution

    |

  7. In a triangle PQR, ∠R=π/2.If tan(P/2) & tan(Q/2), are the roots of the...

    Text Solution

    |

  8. If in a triangle PQR; sin P, sin Q, sin R are in A.P; then (A)the alt...

    Text Solution

    |

  9. In a DeltaABC, angleB=(pi)/(3) and angleC=(pi)/(4) let D divide BC in...

    Text Solution

    |

  10. Let A B C be a triangle such that /A C B=pi/6 and let a , b and c deno...

    Text Solution

    |

  11. Let PQR be a triangle of area Delta with a = 2, b = 7//2, and c = 5//2...

    Text Solution

    |

  12. One angle of an isosceles triangle is 120^0 and the radius of its incr...

    Text Solution

    |

  13. In a triangle, the sum of two sides is x and the product of the same t...

    Text Solution

    |

  14. Which of the following pieces of data does NOT uniquely determine an ...

    Text Solution

    |

  15. In triangle ABC, let angle C = pi//2. If r is the inradius and R is ci...

    Text Solution

    |

  16. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  17. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  18. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. A triangle A B C with fixed base B C , the vertex A moves such that co...

    Text Solution

    |

  21. Internal bisector of angle A of Delta ABC meets side BC to D. A line ...

    Text Solution

    |