Home
Class 12
MATHS
Given (b+c)/(11) = (c+a)/(12) = (a+b)/(...

Given `(b+c)/(11) = (c+a)/(12) = (a+b)/(13)` for a `Delta ABC` with usual notation. If `(cos A)/(alpha) = (cos B)/(beta) = (cos C)/(gamma)`, then the ordered triad `(alpha, beta, gamma)` has a value:

A

(3, 4, 5)

B

(5, 12, 13)

C

(7, 19, 25)

D

(19, 7, 25)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start from the given equations and derive the values of \( a \), \( b \), and \( c \) in terms of \( \lambda \), and then find the ordered triad \( (\alpha, \beta, \gamma) \). ### Step 1: Set up the equations Given: \[ \frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = \lambda \] From this, we can write three equations: 1. \( b + c = 11\lambda \) 2. \( c + a = 12\lambda \) 3. \( a + b = 13\lambda \) ### Step 2: Express \( a \), \( b \), and \( c \) in terms of \( \lambda \) From the first equation: \[ c = 11\lambda - b \tag{1} \] Substituting (1) into the second equation: \[ (11\lambda - b) + a = 12\lambda \implies a = 12\lambda - 11\lambda + b \implies a = \lambda + b \tag{2} \] Now substituting (2) into the third equation: \[ (\lambda + b) + b = 13\lambda \implies \lambda + 2b = 13\lambda \implies 2b = 12\lambda \implies b = 6\lambda \tag{3} \] ### Step 3: Find \( a \) and \( c \) Using (3) in (2): \[ a = \lambda + 6\lambda = 7\lambda \tag{4} \] Using (3) in (1): \[ c = 11\lambda - 6\lambda = 5\lambda \tag{5} \] Now we have: - \( a = 7\lambda \) - \( b = 6\lambda \) - \( c = 5\lambda \) ### Step 4: Calculate \( \cos A \), \( \cos B \), and \( \cos C \) Using the cosine rule: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Substituting values: \[ \cos A = \frac{(6\lambda)^2 + (5\lambda)^2 - (7\lambda)^2}{2 \cdot 6\lambda \cdot 5\lambda} = \frac{36\lambda^2 + 25\lambda^2 - 49\lambda^2}{60\lambda^2} = \frac{12\lambda^2}{60\lambda^2} = \frac{1}{5} \] Now for \( \cos B \): \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] Substituting values: \[ \cos B = \frac{(7\lambda)^2 + (5\lambda)^2 - (6\lambda)^2}{2 \cdot 7\lambda \cdot 5\lambda} = \frac{49\lambda^2 + 25\lambda^2 - 36\lambda^2}{70\lambda^2} = \frac{38\lambda^2}{70\lambda^2} = \frac{19}{35} \] Now for \( \cos C \): \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] Substituting values: \[ \cos C = \frac{(7\lambda)^2 + (6\lambda)^2 - (5\lambda)^2}{2 \cdot 7\lambda \cdot 6\lambda} = \frac{49\lambda^2 + 36\lambda^2 - 25\lambda^2}{84\lambda^2} = \frac{60\lambda^2}{84\lambda^2} = \frac{5}{7} \] ### Step 5: Find \( \alpha, \beta, \gamma \) From the problem statement: \[ \frac{\cos A}{\alpha} = \frac{\cos B}{\beta} = \frac{\cos C}{\gamma} = k \] Thus: \[ \alpha = \frac{\cos A}{k}, \quad \beta = \frac{\cos B}{k}, \quad \gamma = \frac{\cos C}{k} \] Let \( k = \frac{1}{5\alpha} \), then: \[ \frac{1}{5} = k\alpha \implies \alpha = 5k \] \[ \frac{19}{35} = k\beta \implies \beta = \frac{19}{35k} \] \[ \frac{5}{7} = k\gamma \implies \gamma = \frac{5}{7k} \] ### Step 6: Find the ordered triad \( (\alpha, \beta, \gamma) \) Setting \( k = 1 \): \[ \alpha = 5, \quad \beta = \frac{19}{35}, \quad \gamma = \frac{5}{7} \] To find the ordered triad: \[ \alpha : \beta : \gamma = 5 : \frac{19}{35} : \frac{5}{7} \] Multiplying through by \( 35 \): \[ \alpha : \beta : \gamma = 175 : 19 : 25 \] Thus, the ordered triad \( (\alpha, \beta, \gamma) \) is: \[ \boxed{(7, 19, 25)} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise Level - 2|55 Videos
  • PROBABILITY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|102 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive )|20 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC , prove that c cos (A - alpha) + a cos (C + alpha) = b cos alpha

In a triangle ABC , if (b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then cos A=

If A =[{:( alpha , a ),( beta , b),( gamma, c):}] then (A)A^(T) is

With usual notations, if in a triangle ABC (b+c)/(11) = (c+a)/(12) = (a+b)/(13) , then cos A : cos B : cos C is :

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to

If alpha +beta + gamma = 2theta then costheta+ cos(theta-alpha)+cos(theta-beta)+ cos(theta-gamma)

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in

The value of cos^(2) alpha +cos^(2) beta +cos^(2) gamma is _____ .

Arrange in increasing order of: a. The mass of alpha, beta , and gamma b. The penetration power of alpha, beta , and gamma

VMC MODULES ENGLISH-PROPERTIES OF TRIANGLE-JEE Main (Archive)
  1. AB is a vertical pole with B at the ground level and and A at the top ...

    Text Solution

    |

  2. A tower stands at the centre of a circular park . A and B are two poin...

    Text Solution

    |

  3. If in Delta ABC, the altitudes from the vertices A, B and C on opposit...

    Text Solution

    |

  4. In triangle ABC, let angle C = pi//2. If r is the inradius and R is ci...

    Text Solution

    |

  5. A person standing on the bank of a river observes that the angle of ...

    Text Solution

    |

  6. The sides of a triangle are sin alpha, cos alpha, sqrt(1+sin alpha cos...

    Text Solution

    |

  7. If in a triangle A B C ,acos^2(C/2)+ c cos^2(A/2)=(3b)/2, then the si...

    Text Solution

    |

  8. In a triangle ABC, medians AD and BE are drawn. If AD=4, angleDAB=(pi)...

    Text Solution

    |

  9. Find the sum of the radii of the circles, which are respectively inscr...

    Text Solution

    |

  10. In a triangle, if r(1) gt r(2) gt r(3), then show a gtb gt c.

    Text Solution

    |

  11. Consider a triangular plot ABC with sides AB = 7 m, BC = 5m and CA = 6...

    Text Solution

    |

  12. With the usual notation in DeltaABC if angleA+angle B=120^(@),a=sqrt...

    Text Solution

    |

  13. Given (b+c)/(11) = (c+a)/(12) = (a+b)/(13) for a Delta ABC with usu...

    Text Solution

    |

  14. If the angle of elevation of a cloud from a point P which is 25 m abov...

    Text Solution

    |

  15. If the lengths of the sides of a triangle are in A.P. and the greatest...

    Text Solution

    |

  16. Two vertical poles of heights, 20 m and 80 m stand apart on a horizont...

    Text Solution

    |

  17. Two poles standing on a horizontal ground are of heights 5 m and 10 m ...

    Text Solution

    |

  18. ABC is a triangular park with AB=AC=100 m .A clock tower is situated a...

    Text Solution

    |

  19. If the angle A, B and C of a triangle ABC are in A.P and a:b=1: sqrt(3...

    Text Solution

    |

  20. The angle fo elevation of the loop of a vertical tower standing on a h...

    Text Solution

    |