Home
Class 12
MATHS
If, in a /\ ABC, (2 cos A)/a + (cos B)...

If, in a `/_\ ABC`,
`(2 cos A)/a + (cos B)/(b) + (2 cos C)/(c) = a/(bc) + b/(ca)`,
then: `/_A = .....`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equation in triangle \( ABC \): \[ \frac{2 \cos A}{a} + \frac{\cos B}{b} + \frac{2 \cos C}{c} = \frac{a}{bc} + \frac{b}{ca} \] we will follow these steps: ### Step 1: Substitute the cosine values We know the cosine values in terms of the sides of the triangle: - \( \cos A = \frac{b^2 + c^2 - a^2}{2bc} \) - \( \cos B = \frac{c^2 + a^2 - b^2}{2ac} \) - \( \cos C = \frac{a^2 + b^2 - c^2}{2ab} \) Substituting these into the equation gives: \[ \frac{2 \left(\frac{b^2 + c^2 - a^2}{2bc}\right)}{a} + \frac{\left(\frac{c^2 + a^2 - b^2}{2ac}\right)}{b} + \frac{2 \left(\frac{a^2 + b^2 - c^2}{2ab}\right)}{c} = \frac{a}{bc} + \frac{b}{ca} \] ### Step 2: Simplify the left-hand side This simplifies to: \[ \frac{(b^2 + c^2 - a^2)}{bc} \cdot \frac{2}{a} + \frac{(c^2 + a^2 - b^2)}{2ac} \cdot \frac{1}{b} + \frac{(a^2 + b^2 - c^2)}{ab} \cdot \frac{2}{c} \] ### Step 3: Combine fractions Finding a common denominator for the left-hand side, which is \( 2abc \): \[ \frac{2(b^2 + c^2 - a^2) + (c^2 + a^2 - b^2) + 2(a^2 + b^2 - c^2)}{2abc} \] ### Step 4: Simplify the numerator Now we simplify the numerator: \[ 2b^2 + 2c^2 - 2a^2 + c^2 + a^2 - b^2 + 2a^2 + 2b^2 - 2c^2 \] Combining like terms gives: \[ (2b^2 - b^2 + 2b^2) + (2c^2 - 2c^2 + c^2) + (-2a^2 + a^2 + 2a^2) = 3b^2 + c^2 + a^2 \] ### Step 5: Set equal to right-hand side Now we equate this to the right-hand side: \[ \frac{3b^2 + c^2 + a^2}{2abc} = \frac{a}{bc} + \frac{b}{ca} \] ### Step 6: Clear denominators Multiply through by \( 2abc \): \[ 3b^2 + c^2 + a^2 = 2a^2 + 2b^2 \] ### Step 7: Rearrange terms Rearranging gives: \[ 3b^2 + c^2 + a^2 - 2a^2 - 2b^2 = 0 \] This simplifies to: \[ b^2 + c^2 - a^2 = 0 \] ### Step 8: Recognize the Pythagorean theorem This implies: \[ a^2 = b^2 + c^2 \] ### Conclusion Since this follows the Pythagorean theorem, triangle \( ABC \) is a right triangle with the right angle at \( A \). Therefore: \[ \angle A = 90^\circ \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|35 Videos
  • PROBABILITY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|102 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive )|20 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

If in a triangle ABC, (1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(c) = (k^(2) (1 + cos A) (1 + cos B) (1 + cos C))/(abc) , then k is equal to

In a triangle ABC, a (b cos C - c cos B) =

In a Delta ABC, show that (a cos A+b cos B+ c cos C)/(a+b+c)= (r )/(R )

In any Delta A B C , prove that: (cos A)/a+(cos B)/b+(cos C)/c=(a^2+b^2+c^2)/(2a b c)

In a Delta ABC , cos (A + B) + cos C =

In Delta ABC, (sin A (a - b cos C))/(sin C (c -b cos A))=

In any DeltaABC, 2 [bc cos A + ca cos B+ ab cos C]=

In any DeltaABC , prove that : (cos A)/a + a/(bc) = (cos B)/b + b/(ca) = (cos c)/c + c/(ab)

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

VMC MODULES ENGLISH-PROPERTIES OF TRIANGLE-JEE Advanced (Archive)
  1. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  2. In a DeltaABC, AD is the altitude from A. Given b gt c, angleC=23^(@)"...

    Text Solution

    |

  3. If, in a /\ ABC, (2 cos A)/a + (cos B)/(b) + (2 cos C)/(c) = a/(bc) ...

    Text Solution

    |

  4. The set of all real numbers a such that a^2+2a ,2a+3,a n da^2+3a+8 are...

    Text Solution

    |

  5. Let A(1), A(2), A(3),…,A(n) be the vertices of an n-sided regular poly...

    Text Solution

    |

  6. The sides of a triangle are three consecutive natural numbers and its ...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. With usual notations, if in a triangle A B C(b+c)/(11)=(c+a)/(12)=(a+b...

    Text Solution

    |

  9. ABC is a triangle and D is the middle point of BC. If AD is perpendicu...

    Text Solution

    |

  10. Show that for any triangle with sides a ,b ,a n dc3(a b+b c+c a)<(a+b+...

    Text Solution

    |

  11. If in triangle ABC, (a=(1+sqrt(3))c m ,b=2c m ,a n d/C=60^0 , then fin...

    Text Solution

    |

  12. If Delta is the area of a triangle with side lengths a, b, and c, then...

    Text Solution

    |

  13. Prove that a triangle A B C is equilateral if and only if tanA+tanB+ta...

    Text Solution

    |

  14. Let A,B,C, be three angles such that A=pi/4 and tanB ,tanC=pdot Find a...

    Text Solution

    |

  15. Consider the following statements concerning a DeltaABC (i) The sid...

    Text Solution

    |

  16. If in a triangle of base 'a', the ratio of the other two sides is r ( ...

    Text Solution

    |

  17. In a triangle ABC, if cos A cos B + sin A sin B sin C = 1, then a:b:c ...

    Text Solution

    |

  18. If in a triangle ABC, cos A +cos B+cos C=3/2, prove that the triangle ...

    Text Solution

    |

  19. If p(1),p(2),p(3) are the altitues of a triangle from the vertieces A,...

    Text Solution

    |

  20. If p(1),p(2),p(3) are the perpendiculars from the vertices of a triang...

    Text Solution

    |