Home
Class 12
MATHS
Solve : log(1-2x)(6x^(2)-5x+1)-log(1-3x)...

Solve : `log_(1-2x)(6x^(2)-5x+1)-log_(1-3x)(4x^(2)-4x+1)=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \log_{(1-2x)}(6x^2 - 5x + 1) - \log_{(1-3x)}(4x^2 - 4x + 1) = 2, \] we will follow these steps: ### Step 1: Factor the Quadratics First, we need to factor the quadratic expressions in the logarithms. 1. For \(6x^2 - 5x + 1\): \[ 6x^2 - 5x + 1 = (2x - 1)(3x - 1). \] 2. For \(4x^2 - 4x + 1\): \[ 4x^2 - 4x + 1 = (2x - 1)^2. \] ### Step 2: Rewrite the Equation Now substituting the factored forms back into the equation, we have: \[ \log_{(1-2x)}((2x-1)(3x-1)) - \log_{(1-3x)}((2x-1)^2) = 2. \] ### Step 3: Use Logarithmic Properties Using the properties of logarithms, we can rewrite the equation: \[ \log_{(1-2x)}((2x-1)(3x-1)) - 2\log_{(1-3x)}(2x-1) = 2. \] This can be rewritten as: \[ \log_{(1-2x)}((2x-1)(3x-1)) - \log_{(1-3x)}((2x-1)^2) = 2. \] ### Step 4: Combine the Logarithms Using the logarithmic identity \(\log_a(b) - \log_a(c) = \log_a\left(\frac{b}{c}\right)\): \[ \log_{(1-2x)}\left(\frac{(2x-1)(3x-1)}{(2x-1)^2}\right) = 2. \] This simplifies to: \[ \log_{(1-2x)}\left(\frac{3x-1}{2x-1}\right) = 2. \] ### Step 5: Convert Logarithmic Equation to Exponential Form From the logarithmic equation, we can write: \[ \frac{3x-1}{2x-1} = (1-2x)^2. \] ### Step 6: Solve the Resulting Equation Cross-multiplying gives: \[ 3x - 1 = (1 - 2x)^2(2x - 1). \] Expanding the right side: \[ (1 - 2x)^2 = 1 - 4x + 4x^2, \] \[ (1 - 2x)^2(2x - 1) = (1 - 4x + 4x^2)(2x - 1). \] Expanding this product leads to: \[ = 2x - 8x^2 + 8x^3 - 1 + 4x - 4x^2, \] \[ = 8x^3 - 12x^2 + 6x - 1. \] Setting the equation \(3x - 1 = 8x^3 - 12x^2 + 6x - 1\) leads to: \[ 0 = 8x^3 - 12x^2 + 3x. \] Factoring out \(x\): \[ x(8x^2 - 12x + 3) = 0. \] ### Step 7: Solve for \(x\) This gives us \(x = 0\) or solving the quadratic \(8x^2 - 12x + 3 = 0\) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 8 \cdot 3}}{2 \cdot 8} = \frac{12 \pm \sqrt{144 - 96}}{16} = \frac{12 \pm \sqrt{48}}{16} = \frac{12 \pm 4\sqrt{3}}{16} = \frac{3 \pm \sqrt{3}}{4}. \] ### Step 8: Check Validity of Solutions We need to check which of these solutions satisfy the conditions for the logarithms: 1. \(1 - 2x > 0\) implies \(x < \frac{1}{2}\). 2. \(1 - 3x > 0\) implies \(x < \frac{1}{3}\). 3. \(2x - 1 \neq 0\) implies \(x \neq \frac{1}{2}\). Thus, the valid solution from \(x = 0\), \(x = \frac{3 + \sqrt{3}}{4}\), and \(x = \frac{3 - \sqrt{3}}{4}\) is \(x = \frac{3 - \sqrt{3}}{4}\) since it is the only one that satisfies all conditions. ### Final Answer Thus, the solution to the equation is: \[ \boxed{\frac{3 - \sqrt{3}}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

Solve log_(x+3)(x^(2)-x) lt 1 .

Solve: log_(0.1)(x^(2)+x-2)>log_(0.1)(x+3)

Solve: log_(0.1)(x^(2)+x-2)>log_(0.1)(x+3)

Solve: (log)_((2x+3))(6x^2+23x+21)+(log)_((3x+7))(4x^2+12 x+9)=4

Solve : log_(2)(4-x)=4-log_(2)(-2-x)

Solve: (log)_3(2x^2+6x-5)>1

Solve: (log)_3(2x^2+6x-5)>1

Solve log_(2)(4xx3^(x)-6)-log_(2)(9^(x)-6)=1 .

Solve log_(2).(x-4)/(2x+5) lt 1 .

Solve log_((1)/(3))(x-1)>log_((1)/(3))4 .

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. Solve : log(1-2x)(6x^(2)-5x+1)-log(1-3x)(4x^(2)-4x+1)=2

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |