Home
Class 12
MATHS
Let f(x)=((x-3)(x+2)(x+5))/((x+1)(x-7))....

Let `f(x)=((x-3)(x+2)(x+5))/((x+1)(x-7))`. Find the intervals were f(x) is positive or negative .

Text Solution

AI Generated Solution

The correct Answer is:
To find the intervals where the function \( f(x) = \frac{(x-3)(x+2)(x+5)}{(x+1)(x-7)} \) is positive or negative, we will follow these steps: ### Step 1: Identify the critical points The critical points occur where the function is either zero or undefined. This happens at the roots of the numerator and the denominator. - **Numerator**: Set \( (x-3)(x+2)(x+5) = 0 \) - \( x - 3 = 0 \) → \( x = 3 \) - \( x + 2 = 0 \) → \( x = -2 \) - \( x + 5 = 0 \) → \( x = -5 \) - **Denominator**: Set \( (x+1)(x-7) = 0 \) - \( x + 1 = 0 \) → \( x = -1 \) - \( x - 7 = 0 \) → \( x = 7 \) So, the critical points are \( x = -5, -2, -1, 3, 7 \). ### Step 2: Create a number line We will place these critical points on a number line: ``` ---|----|----|----|----|----|----|---- -5 -2 -1 3 7 ``` ### Step 3: Test intervals We will test the sign of \( f(x) \) in each interval defined by these critical points: 1. **Interval \( (-\infty, -5) \)**: - Choose \( x = -6 \): \[ f(-6) = \frac{(-6-3)(-6+2)(-6+5)}{(-6+1)(-6-7)} = \frac{(-9)(-4)(-1)}{(-5)(-13)} = \frac{-36}{65} < 0 \] 2. **Interval \( (-5, -2) \)**: - Choose \( x = -4 \): \[ f(-4) = \frac{(-4-3)(-4+2)(-4+5)}{(-4+1)(-4-7)} = \frac{(-7)(-2)(1)}{(-3)(-11)} = \frac{14}{33} > 0 \] 3. **Interval \( (-2, -1) \)**: - Choose \( x = -1.5 \): \[ f(-1.5) = \frac{(-1.5-3)(-1.5+2)(-1.5+5)}{(-1.5+1)(-1.5-7)} = \frac{(-4.5)(0.5)(3.5)}{(-0.5)(-8.5)} = \frac{-7.875}{4.25} < 0 \] 4. **Interval \( (-1, 3) \)**: - Choose \( x = 0 \): \[ f(0) = \frac{(0-3)(0+2)(0+5)}{(0+1)(0-7)} = \frac{(-3)(2)(5)}{(1)(-7)} = \frac{-30}{-7} > 0 \] 5. **Interval \( (3, 7) \)**: - Choose \( x = 5 \): \[ f(5) = \frac{(5-3)(5+2)(5+5)}{(5+1)(5-7)} = \frac{(2)(7)(10)}{(6)(-2)} = \frac{140}{-12} < 0 \] 6. **Interval \( (7, \infty) \)**: - Choose \( x = 8 \): \[ f(8) = \frac{(8-3)(8+2)(8+5)}{(8+1)(8-7)} = \frac{(5)(10)(13)}{(9)(1)} = \frac{650}{9} > 0 \] ### Step 4: Summarize the results From our testing, we find: - \( f(x) < 0 \) in the intervals: \( (-\infty, -5) \), \( (-2, -1) \), \( (3, 7) \) - \( f(x) > 0 \) in the intervals: \( (-5, -2) \), \( (-1, 3) \), \( (7, \infty) \) ### Final Answer The intervals where \( f(x) \) is positive are: \[ (-5, -2) \cup (-1, 3) \cup (7, \infty) \] The intervals where \( f(x) \) is negative are: \[ (-\infty, -5) \cup (-2, -1) \cup (3, 7) \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=((x-3)(x+2)(x+6))/((x+1)(x-5)) Find intervals where f(x) is positive or negative

Find the interval in which f(x) is positive or negative : f(x) = (x-1)(x-2)(x-3)

Let f(x)=sin^(-1)((2phi(x))/(1+phi^(2)(x))) . Find the interval in which f(x) is increasing or decreasing.

Let f(x) =inte^x(x-1)(x-2)dx, then f(x) decrease in the interval

Let f(x)=(3x-7)x^(2/3) . The interval in which f(x) is increasing.

Let f(x)=(2x)/(2x^(2)+5x+2) , find the interval for which f(x)>0.

Let f(x)=x^3-3x^2+2x Find f'(x)

Let f(x)=x- sinx. Find the intervals of monotonicity.

Let f(x) = ((x - 1))/((2x^(2) - 7x + 5)) then

Let f (x) =x^(3) . Find the intervals of monotonicity.

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. Let f(x)=((x-3)(x+2)(x+5))/((x+1)(x-7)). Find the intervals were f(x) ...

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |