Home
Class 12
MATHS
Find the solution set of ((x-1)(x-2)^(2...

Find the solution set of `((x-1)(x-2)^(2)(x+4))/((x+2)(x-3)) ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{(x-1)(x-2)^{2}(x+4)}{(x+2)(x-3)} \geq 0\), we will follow these steps: ### Step 1: Identify the critical points The critical points are the values of \(x\) where the expression is either zero or undefined. We find these by setting the numerator and denominator to zero. - **Numerator**: \((x-1)(x-2)^{2}(x+4) = 0\) - \(x - 1 = 0 \Rightarrow x = 1\) - \(x - 2 = 0 \Rightarrow x = 2\) (with multiplicity 2) - \(x + 4 = 0 \Rightarrow x = -4\) - **Denominator**: \((x+2)(x-3) = 0\) - \(x + 2 = 0 \Rightarrow x = -2\) - \(x - 3 = 0 \Rightarrow x = 3\) Thus, the critical points are \(x = -4\), \(x = -2\), \(x = 1\), \(x = 2\), and \(x = 3\). ### Step 2: Create a number line We will plot the critical points on a number line: ``` ---|---|---|---|---|---|---|---|---|---|--- -4 -2 1 2 3 ``` ### Step 3: Test intervals We will test the sign of the expression in each interval created by the critical points: 1. **Interval \((-∞, -4)\)**: Choose \(x = -5\) \[ \frac{(-5-1)(-5-2)^{2}(-5+4)}{(-5+2)(-5-3)} = \frac{(-6)(49)(-1)}{(-3)(-8)} > 0 \] 2. **Interval \((-4, -2)\)**: Choose \(x = -3\) \[ \frac{(-3-1)(-3-2)^{2}(-3+4)}{(-3+2)(-3-3)} = \frac{(-4)(25)(1)}{(-1)(-6)} < 0 \] 3. **Interval \((-2, 1)\)**: Choose \(x = 0\) \[ \frac{(0-1)(0-2)^{2}(0+4)}{(0+2)(0-3)} = \frac{(-1)(4)(4)}{(2)(-3)} > 0 \] 4. **Interval \((1, 2)\)**: Choose \(x = 1.5\) \[ \frac{(1.5-1)(1.5-2)^{2}(1.5+4)}{(1.5+2)(1.5-3)} = \frac{(0.5)(0.25)(5.5)}{(3.5)(-1.5)} < 0 \] 5. **Interval \((2, 3)\)**: Choose \(x = 2.5\) \[ \frac{(2.5-1)(2.5-2)^{2}(2.5+4)}{(2.5+2)(2.5-3)} = \frac{(1.5)(0.25)(6.5)}{(4.5)(-0.5)} < 0 \] 6. **Interval \((3, ∞)\)**: Choose \(x = 4\) \[ \frac{(4-1)(4-2)^{2}(4+4)}{(4+2)(4-3)} = \frac{(3)(4)(8)}{(6)(1)} > 0 \] ### Step 4: Determine the solution set From the tests, we find: - The expression is non-negative in the intervals \((-∞, -4)\), \((-2, 1)\), and \((3, ∞)\). - At the critical points: - \(x = -4\): \(0\) (included) - \(x = -2\): undefined (not included) - \(x = 1\): \(0\) (included) - \(x = 2\): \(0\) (included) - \(x = 3\): undefined (not included) ### Final Solution Set Combining these results, the solution set is: \[ (-\infty, -4] \cup (-2, 1] \cup [2, 3) \cup (3, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

Find the solution set of ((x-1)(x-2)(x-3)^(2))/((x-4)^(2)(x-5)^(3)) lt 0

The solution set of ((x^(2)+x+1)(x^(2))log(x))/((x+1)(x+9))lt 0 is

Complete solution set of inequlaity ((x+2)(x+3))/((x-2)(x-3))le1

The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+1)(x-3)) ge 0 is

Solution set of 1/(x^2-x+1) >= 4 is

The solution set of (x+(1)/(x) ) ^2 -3/2 (x-(1)/(x)) =4 when x ne 0 is

If x in W, find the solution set of (3)/(5) x - ( 2x -1)/(3) gt1.

The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-2)(x+1)x) le 0

(4x)/(x^(2) +3)ge 1.

The solution set of x^(2) +x + |x| +1 lt 0 , is

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. Find the solution set of ((x-1)(x-2)^(2)(x+4))/((x+2)(x-3)) ge 0

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |