Home
Class 12
MATHS
Find the solution set of ((x-1)(x-2)(x-3...

Find the solution set of `((x-1)(x-2)(x-3)^(2))/((x-4)^(2)(x-5)^(3)) lt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{(x-1)(x-2)(x-3)^2}{(x-4)^2(x-5)^3} < 0\), we will follow these steps: ### Step 1: Identify the critical points The critical points occur when the numerator or denominator is equal to zero. We set each factor in the numerator and denominator to zero: - \(x - 1 = 0 \Rightarrow x = 1\) - \(x - 2 = 0 \Rightarrow x = 2\) - \(x - 3 = 0 \Rightarrow x = 3\) (note that this factor is squared) - \(x - 4 = 0 \Rightarrow x = 4\) (note that this factor is squared) - \(x - 5 = 0 \Rightarrow x = 5\) (note that this factor is cubed) Thus, the critical points are \(x = 1, 2, 3, 4, 5\). ### Step 2: Determine the intervals The critical points divide the number line into the following intervals: - \((-∞, 1)\) - \((1, 2)\) - \((2, 3)\) - \((3, 4)\) - \((4, 5)\) - \((5, ∞)\) ### Step 3: Test each interval We will test a point from each interval to determine the sign of the expression in that interval. 1. **Interval \((-∞, 1)\)**: Choose \(x = 0\) \[ \frac{(0-1)(0-2)(0-3)^2}{(0-4)^2(0-5)^3} = \frac{(-1)(-2)(9)}{(16)(-125)} = \frac{18}{-2000} < 0 \] 2. **Interval \((1, 2)\)**: Choose \(x = 1.5\) \[ \frac{(1.5-1)(1.5-2)(1.5-3)^2}{(1.5-4)^2(1.5-5)^3} = \frac{(0.5)(-0.5)(2.25)}{(6.25)(-27)} = \frac{-2.8125}{-168.75} > 0 \] 3. **Interval \((2, 3)\)**: Choose \(x = 2.5\) \[ \frac{(2.5-1)(2.5-2)(2.5-3)^2}{(2.5-4)^2(2.5-5)^3} = \frac{(1.5)(0.5)(0.25)}{(2.25)(-15.625)} = \frac{0.1875}{-35.15625} < 0 \] 4. **Interval \((3, 4)\)**: Choose \(x = 3.5\) \[ \frac{(3.5-1)(3.5-2)(3.5-3)^2}{(3.5-4)^2(3.5-5)^3} = \frac{(2.5)(1.5)(0.25)}{(0.25)(-11.390625)} = \frac{0.9375}{-2.84765625} < 0 \] 5. **Interval \((4, 5)\)**: Choose \(x = 4.5\) \[ \frac{(4.5-1)(4.5-2)(4.5-3)^2}{(4.5-4)^2(4.5-5)^3} = \frac{(3.5)(2.5)(1.5^2)}{(0.25)(-0.125)} = \frac{(3.5)(2.5)(2.25)}{-0.03125} > 0 \] 6. **Interval \((5, ∞)\)**: Choose \(x = 6\) \[ \frac{(6-1)(6-2)(6-3)^2}{(6-4)^2(6-5)^3} = \frac{(5)(4)(9)}{(4)(1)} = 45 > 0 \] ### Step 4: Combine the results From our tests, we found that the expression is negative in the intervals: - \((-∞, 1)\) - \((2, 3)\) - \((3, 4)\) ### Step 5: Write the solution set The solution set for the inequality \(\frac{(x-1)(x-2)(x-3)^2}{(x-4)^2(x-5)^3} < 0\) is: \[ (-\infty, 1) \cup (2, 3) \cup (3, 4) \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

Find the solution set of ((x-1)(x-2)^(2)(x+4))/((x+2)(x-3)) ge 0

The solution set of ((3)/(5))^(x)=x-x^(2)-9 is

The solution set of ((x^(2)+x+1)(x^(2))log(x))/((x+1)(x+9))lt 0 is

Solution set of (5x-1)lt (x+1)^(2)lt (7x -3) is

Find the largest integral x which satisfies the following inequality: (x+1)(x-3)^(2) (x-5)(x-4)^(2)(x-2) lt 0

The solution set of (x+(1)/(x) ) ^2 -3/2 (x-(1)/(x)) =4 when x ne 0 is

The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-2)(x+1)x) le 0

The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x-2))/(x) lt 0

If 0 lt a lt 1 , then the solution set of the inequation (1+(log_(a)x)^(2))/(1+(log_(a)x)) gt1 , is

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. Find the solution set of ((x-1)(x-2)(x-3)^(2))/((x-4)^(2)(x-5)^(3)) lt...

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |