Home
Class 12
MATHS
If f(x)=sqrt((3x-6)/(x+2))+root(4)((x^(4...

If `f(x)=sqrt((3x-6)/(x+2))+root(4)((x^(4)-5x^3+6x^(2))(1-x^(2)))`, find complex values of x , for which f(x) is real

Text Solution

AI Generated Solution

The correct Answer is:
To find the complex values of \( x \) for which \( f(x) \) is real, we need to analyze the function given: \[ f(x) = \sqrt{\frac{3x-6}{x+2}} + \sqrt[4]{(x^4 - 5x^3 + 6x^2)(1 - x^2)} \] ### Step 1: Analyze the first term \( \sqrt{\frac{3x-6}{x+2}} \) For the square root to be real, the expression inside must be non-negative: \[ \frac{3x-6}{x+2} \geq 0 \] This inequality can be solved by finding the critical points where the numerator and denominator are zero: - **Numerator**: \( 3x - 6 = 0 \) implies \( x = 2 \) - **Denominator**: \( x + 2 = 0 \) implies \( x = -2 \) Now, we will test the intervals determined by these points: \( (-\infty, -2) \), \( (-2, 2) \), and \( (2, \infty) \). 1. **Interval \( (-\infty, -2) \)**: Choose \( x = -3 \): \[ \frac{3(-3)-6}{-3+2} = \frac{-9-6}{-1} = \frac{-15}{-1} = 15 \quad (\text{positive}) \] 2. **Interval \( (-2, 2) \)**: Choose \( x = 0 \): \[ \frac{3(0)-6}{0+2} = \frac{-6}{2} = -3 \quad (\text{negative}) \] 3. **Interval \( (2, \infty) \)**: Choose \( x = 3 \): \[ \frac{3(3)-6}{3+2} = \frac{9-6}{5} = \frac{3}{5} \quad (\text{positive}) \] Thus, the first term is real for \( x \in (-\infty, -2) \cup (2, \infty) \). ### Step 2: Analyze the second term \( \sqrt[4]{(x^4 - 5x^3 + 6x^2)(1 - x^2)} \) For the fourth root to be real, the expression inside must be non-negative: \[ (x^4 - 5x^3 + 6x^2)(1 - x^2) \geq 0 \] #### Part A: Analyze \( 1 - x^2 \) The expression \( 1 - x^2 \) is non-negative when: \[ -1 \leq x \leq 1 \] #### Part B: Analyze \( x^4 - 5x^3 + 6x^2 \) Factor out \( x^2 \): \[ x^2(x^2 - 5x + 6) = x^2(x-2)(x-3) \] The roots are \( x = 0, 2, 3 \). The sign of this expression can be analyzed over the intervals determined by these roots: \( (-\infty, 0) \), \( (0, 2) \), \( (2, 3) \), and \( (3, \infty) \). 1. **Interval \( (-\infty, 0) \)**: Choose \( x = -1 \): \[ (-1)^2(-1-2)(-1-3) = 1 \cdot (-3) \cdot (-4) = 12 \quad (\text{positive}) \] 2. **Interval \( (0, 2) \)**: Choose \( x = 1 \): \[ 1^2(1-2)(1-3) = 1 \cdot (-1) \cdot (-2) = 2 \quad (\text{positive}) \] 3. **Interval \( (2, 3) \)**: Choose \( x = 2.5 \): \[ (2.5)^2(2.5-2)(2.5-3) = 6.25 \cdot 0.5 \cdot (-0.5) = -1.5625 \quad (\text{negative}) \] 4. **Interval \( (3, \infty) \)**: Choose \( x = 4 \): \[ 4^2(4-2)(4-3) = 16 \cdot 2 \cdot 1 = 32 \quad (\text{positive}) \] Thus, \( x^4 - 5x^3 + 6x^2 \geq 0 \) for \( x \in (-\infty, 0] \cup [2, 3] \cup [3, \infty) \). ### Step 3: Combine conditions The conditions for \( f(x) \) to be real are: 1. From the first term: \( x \in (-\infty, -2) \cup (2, \infty) \) 2. From the second term: \( x \in (-\infty, 0] \cup [2, 3] \cup [3, \infty) \) The intersection of these conditions gives us: - For \( (-\infty, -2) \): valid - For \( (2, \infty) \): valid only for \( x \in (2, 3) \cup (3, \infty) \) ### Final Result Thus, the complex values of \( x \) for which \( f(x) \) is real are: \[ x \in (-\infty, -2) \cup (2, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

consider the function f(X) = 3x^(4)+4x^(3)-12x^(2) The range of values of a for which f(x) = a has no real

For the function f(x)=x^(2)-6x+8, 2 le x le 4 , the value of x for which f'(x) vanishes is

f(x)=x^3-6x^2-19 x+84 ,\ g(x)=x-7 find the value of f(x)-g(x).

Suppose that the function f(x) and g(x) satisfy the system of equations f(x)+3g(x)=x^(2)+x+6 and 2f(x)+4g(x)=2x^(2)+4 for every x. The value of x for which f(x)=g(x) can be equal to

"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3)) . Then find the value of f'(0).

f(x)=x^2+1/(x^2)-6x-6/x+2 then min value of f(x)

Let f(x)=sqrt(x^(2)-4x) and g(x) = 3x . The sum of all values for which f(x) = g(x) is

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

If f(x) = x^2 - 3x + 4 , then find the values of x satisfying the equation f(x) = f(2x + 1) .

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. If f(x)=sqrt((3x-6)/(x+2))+root(4)((x^(4)-5x^3+6x^(2))(1-x^(2))), find...

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |