Home
Class 12
MATHS
Solve : (x^2 +x -4)/(x) lt 1 and x^(2) l...

Solve : `(x^2 +x -4)/(x) lt 1 and x^(2) lt 64`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequalities \(\frac{x^2 + x - 4}{x} < 1\) and \(x^2 < 64\), we will follow these steps: ### Step 1: Solve the first inequality \(\frac{x^2 + x - 4}{x} < 1\) 1. Start by rewriting the inequality: \[ \frac{x^2 + x - 4}{x} - 1 < 0 \] This simplifies to: \[ \frac{x^2 + x - 4 - x}{x} < 0 \] Which further simplifies to: \[ \frac{x^2 - 4}{x} < 0 \] 2. Factor the numerator: \[ \frac{(x - 2)(x + 2)}{x} < 0 \] ### Step 2: Determine the critical points The critical points occur when the numerator or denominator is zero: - \(x - 2 = 0 \Rightarrow x = 2\) - \(x + 2 = 0 \Rightarrow x = -2\) - \(x = 0\) (from the denominator) Thus, the critical points are \(x = -2, 0, 2\). ### Step 3: Test intervals around the critical points We will test the sign of the expression in the intervals: 1. \( (-\infty, -2) \) 2. \( (-2, 0) \) 3. \( (0, 2) \) 4. \( (2, \infty) \) - For \(x < -2\) (e.g., \(x = -3\)): \[ \frac{(-3 - 2)(-3 + 2)}{-3} = \frac{(-5)(-1)}{-3} = \frac{5}{-3} < 0 \quad \text{(True)} \] - For \(-2 < x < 0\) (e.g., \(x = -1\)): \[ \frac{(-1 - 2)(-1 + 2)}{-1} = \frac{(-3)(1)}{-1} = \frac{-3}{-1} > 0 \quad \text{(False)} \] - For \(0 < x < 2\) (e.g., \(x = 1\)): \[ \frac{(1 - 2)(1 + 2)}{1} = \frac{(-1)(3)}{1} = -3 < 0 \quad \text{(True)} \] - For \(x > 2\) (e.g., \(x = 3\)): \[ \frac{(3 - 2)(3 + 2)}{3} = \frac{(1)(5)}{3} > 0 \quad \text{(False)} \] ### Step 4: Combine the intervals From the tests, the solution for the first inequality is: \[ x \in (-\infty, -2) \cup (0, 2) \] ### Step 5: Solve the second inequality \(x^2 < 64\) 1. Rewrite the inequality: \[ x^2 - 64 < 0 \] Factor it: \[ (x - 8)(x + 8) < 0 \] ### Step 6: Determine the critical points The critical points are: - \(x - 8 = 0 \Rightarrow x = 8\) - \(x + 8 = 0 \Rightarrow x = -8\) ### Step 7: Test intervals around the critical points We will test the sign of the expression in the intervals: 1. \( (-\infty, -8) \) 2. \( (-8, 8) \) 3. \( (8, \infty) \) - For \(x < -8\) (e.g., \(x = -9\)): \[ (-9 - 8)(-9 + 8) = (-17)(-1) > 0 \quad \text{(False)} \] - For \(-8 < x < 8\) (e.g., \(x = 0\)): \[ (0 - 8)(0 + 8) = (-8)(8) < 0 \quad \text{(True)} \] - For \(x > 8\) (e.g., \(x = 9\)): \[ (9 - 8)(9 + 8) = (1)(17) > 0 \quad \text{(False)} \] ### Step 8: Combine the intervals From the tests, the solution for the second inequality is: \[ x \in (-8, 8) \] ### Step 9: Find the intersection of the two solutions We need to find the intersection of: 1. \(x \in (-\infty, -2) \cup (0, 2)\) 2. \(x \in (-8, 8)\) The intersection is: 1. From \((-8, -2)\) 2. From \((0, 2)\) Thus, the final solution is: \[ x \in (-8, -2) \cup (0, 2) \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

Solve log_(2).(x-4)/(2x+5) lt 1 .

Solve : (x +2)/(x+1)lt 0

Solve, (sqrt(2x-1))/(x-2) lt 1 .

Solve (x^2 -x-1) (x^2-x-7) lt -5

Solve (x^2-4)sqrt(x^2 -1) lt 0.

Solve : (1)/(x) lt (2)/(x-2)

Solve |3x -2 | lt 4

Solve : (x+4)/(x-2)-(2)/(x+1) lt 0

solve : (|x-1|)/(x+1)lt1

Solve sqrt(x-1)/(x-2) lt 0

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. Solve : (x^2 +x -4)/(x) lt 1 and x^(2) lt 64

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |