Home
Class 12
MATHS
If alpha , beta are the roots of ax^(...

If ` alpha , beta ` are the roots of ` ax^(2) + bx +c=0` , then ` (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3))` is equal to :

A

`(c^(2))/(a^(2))`

B

`(c^(3))/(a^(3))`

C

`(3abc-b^(3))/(c^(3))`

D

`(b^(2)-2ac)/(ac)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\alpha^3 + \beta^3}{\alpha^{-3} + \beta^{-3}}\) where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(ax^2 + bx + c = 0\). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression: \[ \frac{\alpha^3 + \beta^3}{\alpha^{-3} + \beta^{-3}} \] 2. **Simplifying the Denominator**: The denominator \(\alpha^{-3} + \beta^{-3}\) can be rewritten using the property of exponents: \[ \alpha^{-3} + \beta^{-3} = \frac{1}{\alpha^3} + \frac{1}{\beta^3} = \frac{\beta^3 + \alpha^3}{\alpha^3 \beta^3} \] Therefore, we can rewrite the expression as: \[ \frac{\alpha^3 + \beta^3}{\frac{\alpha^3 + \beta^3}{\alpha^3 \beta^3}} = \frac{(\alpha^3 + \beta^3) \cdot \alpha^3 \beta^3}{\alpha^3 + \beta^3} \] 3. **Cancelling the Common Terms**: Since \(\alpha^3 + \beta^3\) is in both the numerator and the denominator, we can cancel it (assuming \(\alpha^3 + \beta^3 \neq 0\)): \[ = \alpha^3 \beta^3 \] 4. **Using Vieta's Formulas**: From Vieta's formulas, we know that: \[ \alpha \beta = \frac{c}{a} \] Therefore, \[ \alpha^3 \beta^3 = (\alpha \beta)^3 = \left(\frac{c}{a}\right)^3 = \frac{c^3}{a^3} \] 5. **Final Result**: Thus, we conclude that: \[ \frac{\alpha^3 + \beta^3}{\alpha^{-3} + \beta^{-3}} = \frac{c^3}{a^3} \] ### Answer: The final answer is: \[ \frac{c^3}{a^3} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha^8 beta ^5=

If alpha, beta are the roots of x^(2) + x + 3=0 then 5alpha+alpha^(4)+ alpha^(3)+ 3alpha^(2)+ 5beta+3=

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is

If alpha and beta are roots of the equation px^(2)+qx+1=0 , then the value of alpha^(3)beta^(2)+alpha^(2)beta^(3) is

if alpha, beta, gamma are the roots of the equation x^(3) + 3x + 2=0 " then " (alpha^(3) +beta^(3)+gamma^(3))/(alpha^(2) +beta^(2)+gamma^(2))

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha, beta, gamma are the roots of x^(3)+ax+b=0 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If alpha,beta are roots of x^(2)-px+q=0 , find the value of (i) alpha^(2)+beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha-beta , (iv) alpha^(4)+beta^(4) .

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3...

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |