Home
Class 12
MATHS
if alpha , beta are root of ax^2+bx+c=0 ...

if `alpha , beta` are root of `ax^2+bx+c=0` then `(1/alpha^2+1/beta^2)^2` (a) `(b^(2)(b^(2)-4ac))/(c^(2)a^(2))` (b) `(b^(2)(b^(2)-4ac))/(ca^(3))` (c) `(b^(2)(b^(2)-4ac))/(a^(4))` (d) `(b^(2)-2ac)^2/(c^(4))`

A

`(b^(2)(b^(2)-4ac))/(c^(2)a^(2))`

B

`(b^(2)(b^(2)-4ac))/(ca^(3))`

C

`(b^(2)(b^(2)-4ac))/(a^(4))`

D

'(b^(2)-2ac)^2/(c^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \left( \frac{1}{\alpha^2} + \frac{1}{\beta^2} \right)^2 \) where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( ax^2 + bx + c = 0 \). ### Step-by-Step Solution: 1. **Identify the Roots**: Given the quadratic equation \( ax^2 + bx + c = 0 \), the roots \( \alpha \) and \( \beta \) satisfy: - Sum of roots: \( \alpha + \beta = -\frac{b}{a} \) - Product of roots: \( \alpha \beta = \frac{c}{a} \) 2. **Express \( \frac{1}{\alpha^2} + \frac{1}{\beta^2} \)**: We can rewrite \( \frac{1}{\alpha^2} + \frac{1}{\beta^2} \) as: \[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\beta^2 + \alpha^2}{\alpha^2 \beta^2} \] 3. **Use the Identity for \( \alpha^2 + \beta^2 \)**: We know that: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values from step 1: \[ \alpha^2 + \beta^2 = \left(-\frac{b}{a}\right)^2 - 2\left(\frac{c}{a}\right) = \frac{b^2}{a^2} - \frac{2c}{a} \] 4. **Substituting Back**: Now substituting \( \alpha^2 + \beta^2 \) into the expression: \[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\frac{b^2}{a^2} - \frac{2c}{a}}{\left(\frac{c}{a}\right)^2} = \frac{b^2 - 2ac}{c^2} \cdot a^2 \] 5. **Final Expression**: Thus, we have: \[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{b^2 - 2ac}{c^2} \cdot a^2 \] 6. **Square the Result**: Now we need to square this expression: \[ \left( \frac{1}{\alpha^2} + \frac{1}{\beta^2} \right)^2 = \left( \frac{b^2 - 2ac}{c^2} \cdot a^2 \right)^2 = \frac{(b^2 - 2ac)^2}{c^4} \] ### Conclusion: The final result is: \[ \left( \frac{1}{\alpha^2} + \frac{1}{\beta^2} \right)^2 = \frac{(b^2 - 2ac)^2}{c^4} \] Thus, the correct option is: **(d) \( \frac{(b^2 - 2ac)^2}{c^4} \)**.
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

If alpha , beta are the roots of ax^2+bx +c=0 then (a alpha + b)^(-2)+( a beta + b)^(-2) =

The roots of the equation ax^(2)+bx+c=0 where a!=0 ,are: 1) (b+-sqrt(b^(2)-4ac))/(2a), 2) (-b+-sqrt(b^(2)-4ac))/(2c), 3) (-b+sqrt(b^(2)-4ac))/(2a), 4) (2a)/(2a-b+sqrt(b^(2)-4ac)

If tantheta and sectheta are the roots of a x^2+b x+c=0, then prove that a^4=b^2(b^2-4ac)dot

If tanthetaa n dsectheta are the roots of a x^2+b x+c=0, then prove that a^4=b^2(b^2 - 4ac)dot

If alpha,beta are the roots of the equation a x^2+b x+c=0 , then 1/(aalpha+b)+1/(abeta+b)= (a) c/(ab) (b) a/(bc) (c) b/(ac) (d) none of these

If alpha, beta are the roots of ax^(2) + bx + c = 0 then the equation with roots (1)/(aalpha+b), (1)/(abeta+b) is

If alpha,beta are the roots of the equation a x^2+b x+c=0, then the value of (aalpha^2+c)/(aalpha+b)+(abeta^2+c)/(abeta+b) is a. (b(b^2-2a c))/(4a) b. (b^2-4a c)/(2a) c. (b(b^2-2a c))/(a^2c) d. none of these

If alpha and beta are the roots equation ax^2-2bx+c=0, then alpha^3beta^3+alpha^2beta^3+alpha^3beta^2= (A) c^2/a^3(c+2b) (B) c^2/c^3(c-2b) (C) bc^2/a^3 (D) none of these

If sinthetaand costheta are the roots of the equation ax^2+bx+c=0 , then (A) (a-c)^2=b^2+c^2 (B) (a+c)^2=b^2-c^2 (C) a^2=b^2-2ac (D) a^2+b^2-2ac=0

Factorise: a^(2) - b^(2) - 4ac + 4c^(2)

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. if alpha , beta are root of ax^2+bx+c=0 then (1/alpha^2+1/beta^2)^2 (a...

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |