Home
Class 12
MATHS
The value of x satisfying |(x^(2)-1)/(x^...

The value of x satisfying `|(x^(2)-1)/(x^(2)+x+1)| lt 1` , are :

A

`x in(-2,oo)`

B

`x in (-oo,-(1)/(2)) cup( 0 ,oo) `

C

`x in (-2,-(1)/(2)) cup (0 , oo ) `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \left| \frac{x^2 - 1}{x^2 + x + 1} \right| < 1 \), we can break it down into two inequalities: 1. \( \frac{x^2 - 1}{x^2 + x + 1} < 1 \) 2. \( \frac{x^2 - 1}{x^2 + x + 1} > -1 \) ### Step 1: Solve the first inequality \( \frac{x^2 - 1}{x^2 + x + 1} < 1 \) To solve this, we can rearrange it: \[ \frac{x^2 - 1}{x^2 + x + 1} - 1 < 0 \] This simplifies to: \[ \frac{x^2 - 1 - (x^2 + x + 1)}{x^2 + x + 1} < 0 \] \[ \frac{x^2 - 1 - x^2 - x - 1}{x^2 + x + 1} < 0 \] \[ \frac{-x - 2}{x^2 + x + 1} < 0 \] ### Step 2: Analyze the denominator \( x^2 + x + 1 \) The quadratic \( x^2 + x + 1 \) has a discriminant \( b^2 - 4ac = 1 - 4 = -3 \), which is less than 0. Therefore, \( x^2 + x + 1 \) is always positive for all \( x \). ### Step 3: Solve the numerator \( -x - 2 < 0 \) This implies: \[ -x - 2 < 0 \implies -x < 2 \implies x > -2 \] ### Step 4: Combine with the denominator condition Since the denominator is always positive, we conclude from the first inequality that: \[ x > -2 \] ### Step 5: Solve the second inequality \( \frac{x^2 - 1}{x^2 + x + 1} > -1 \) Rearranging gives: \[ \frac{x^2 - 1}{x^2 + x + 1} + 1 > 0 \] This simplifies to: \[ \frac{x^2 - 1 + (x^2 + x + 1)}{x^2 + x + 1} > 0 \] \[ \frac{2x^2 + x}{x^2 + x + 1} > 0 \] ### Step 6: Analyze the numerator \( 2x^2 + x \) Factoring gives: \[ x(2x + 1) > 0 \] ### Step 7: Find the critical points The critical points are: 1. \( x = 0 \) 2. \( 2x + 1 = 0 \implies x = -\frac{1}{2} \) ### Step 8: Test intervals We test the intervals determined by the critical points \( -2, -\frac{1}{2}, 0 \): - For \( x < -2 \): Choose \( x = -3 \) → \( (-3)(-6) > 0 \) (True) - For \( -2 < x < -\frac{1}{2} \): Choose \( x = -1 \) → \( (-1)(-1) > 0 \) (True) - For \( -\frac{1}{2} < x < 0 \): Choose \( x = -0.25 \) → \( (-0.25)(0.5) < 0 \) (False) - For \( x > 0 \): Choose \( x = 1 \) → \( (1)(3) > 0 \) (True) ### Step 9: Combine results From the two inequalities, we have: 1. From \( \frac{-x - 2}{x^2 + x + 1} < 0 \): \( x > -2 \) 2. From \( \frac{2x^2 + x}{x^2 + x + 1} > 0 \): \( x < -\frac{1}{2} \) or \( x > 0 \) ### Final solution Combining these gives us: \[ x \in (-2, -\frac{1}{2}) \cup (0, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

The set of values of x satisfying |(x^(2)-5x+4)/(x^(2)-4)| le 1 is

Find the smallest integral value of x satisfying (x-2)^(x^(2)-6x+8) gt 1 .

Value of x, satisfying x^2 + 2x = -1 is :

If a lt 0, then the value of x satisfying x ^(2)-2a|x-a| -3a ^(2)=0 is/are

The set of values of x satisfying |sin^(- 1)x|lt|cos^(- 1)x|, is

The number of values of x satisfying 1 +"log"_(5) (x^(2) + 1) ge "log"_(5) (x^(2) + 4x +1) , is

Find the smallest integral value of x satisfying (x-2)^(x^2-6x+8))>1

The set of real values of x satisfying ||x-1|-1|le 1 , is

For what values of a is the inequality (x^(2) +ax-2)/( x^(2) -x+1) lt 2 satisfied for all real values of x?

The set of all values of x satisfying the inequations (x-1)^(3) (x+1) lt 0 is

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. The value of x satisfying |(x^(2)-1)/(x^(2)+x+1)| lt 1 , are :

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |