Home
Class 12
MATHS
if (6x^2-5x-3)/(x^2-2x+6)<=4, then the l...

if `(6x^2-5x-3)/(x^2-2x+6)<=4`, then the least and the highest values of `4x^2` are`:` (a) 0 and 81 (b) 9 and 81 (c) 36 and 81 (d) None of these

A

0 and 81

B

9 and 81

C

36 and 81

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \frac{6x^2 - 5x - 3}{x^2 - 2x + 6} \leq 4 \), we will follow these steps: ### Step 1: Rearranging the Inequality We start by moving 4 to the left side: \[ \frac{6x^2 - 5x - 3}{x^2 - 2x + 6} - 4 \leq 0 \] This can be rewritten as: \[ \frac{6x^2 - 5x - 3 - 4(x^2 - 2x + 6)}{x^2 - 2x + 6} \leq 0 \] ### Step 2: Simplifying the Numerator Now, we simplify the numerator: \[ 6x^2 - 5x - 3 - 4(x^2 - 2x + 6) = 6x^2 - 5x - 3 - 4x^2 + 8x - 24 \] Combining like terms gives: \[ (6x^2 - 4x^2) + (-5x + 8x) + (-3 - 24) = 2x^2 + 3x - 27 \] Thus, we have: \[ \frac{2x^2 + 3x - 27}{x^2 - 2x + 6} \leq 0 \] ### Step 3: Finding Critical Points Next, we find the critical points by setting the numerator equal to zero: \[ 2x^2 + 3x - 27 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-27)}}{2 \cdot 2} \] \[ x = \frac{-3 \pm \sqrt{9 + 216}}{4} \] \[ x = \frac{-3 \pm \sqrt{225}}{4} \] \[ x = \frac{-3 \pm 15}{4} \] Calculating the two possible values: 1. \( x = \frac{12}{4} = 3 \) 2. \( x = \frac{-18}{4} = -\frac{9}{2} \) ### Step 4: Analyzing the Sign of the Expression We need to analyze the sign of \( \frac{2x^2 + 3x - 27}{x^2 - 2x + 6} \) in the intervals determined by the critical points \( x = -\frac{9}{2} \) and \( x = 3 \). 1. **For \( x < -\frac{9}{2} \)**: Choose \( x = -5 \) - Numerator: \( 2(-5)^2 + 3(-5) - 27 = 50 - 15 - 27 = 8 \) (positive) - Denominator: \( (-5)^2 - 2(-5) + 6 = 25 + 10 + 6 = 41 \) (positive) 2. **For \( -\frac{9}{2} < x < 3 \)**: Choose \( x = 0 \) - Numerator: \( 2(0)^2 + 3(0) - 27 = -27 \) (negative) - Denominator: \( (0)^2 - 2(0) + 6 = 6 \) (positive) 3. **For \( x > 3 \)**: Choose \( x = 4 \) - Numerator: \( 2(4)^2 + 3(4) - 27 = 32 + 12 - 27 = 17 \) (positive) - Denominator: \( (4)^2 - 2(4) + 6 = 16 - 8 + 6 = 14 \) (positive) ### Step 5: Conclusion on Intervals The expression \( \frac{2x^2 + 3x - 27}{x^2 - 2x + 6} \leq 0 \) holds in the interval \( x \in \left[-\frac{9}{2}, 3\right] \). ### Step 6: Finding Values of \( 4x^2 \) Now, we need to find the minimum and maximum values of \( 4x^2 \) in this interval. 1. **At \( x = 0 \)**: \[ 4(0)^2 = 0 \] 2. **At \( x = -\frac{9}{2} \)**: \[ 4\left(-\frac{9}{2}\right)^2 = 4 \cdot \frac{81}{4} = 81 \] 3. **At \( x = 3 \)**: \[ 4(3)^2 = 36 \] ### Final Values The least value of \( 4x^2 \) is \( 0 \) and the highest value is \( 81 \). ### Answer Thus, the least and highest values of \( 4x^2 \) are \( 0 \) and \( 81 \), respectively. The correct option is (a) 0 and 81.
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

lim_(xrarr2) (x^(2)-5x+6)/(x^(2)-6x+8)

If (x^2-7|x|+10)/(x^2-6x+9) a (-5,-2) b. (2,3) c. (3,5) d. (-5,-2)uu(2,3)uu(3,5)

Resolve (x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6) into partial fractions:

If (x^(2)+6x-16)/(x^(2)-5x+6)=(-6)/(x^(2)-2x-3) , then which of the following could be a value of x?

Find the values of x for which f(x) is positive if f(x)=(x^(2)-6x+5)/(x^(2)-5x+6) .

Find the domain of the function f(x) = (x^(2)+5x+1)/(x^(2)-6x + 8) .

Factorise:(i) 12 x^2-7x+1 (ii) 2x^2+7x+3 (iii) 6x^2+5x-6 (iv) 3x^2-x-4

Solve the inequation 2^(2x^(2)-10x+3)+6.2^(x^(2)-5x).3^(x^(2)-5x)ge3^(2x^(2)-10x+3)

Evaluate the following limits : Lim_(x to 2) (x^(2) +5x+6)/(2x^(2) -3x)

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. if (6x^2-5x-3)/(x^2-2x+6)<=4, then the least and the highest values of...

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |