Home
Class 12
MATHS
The number of real roots of (7+4sqrt(3))...

The number of real roots of `(7+4sqrt(3))^(|x|- 8)+(7-4sqrt(3))^(|x|-8)=14` is

A

0

B

4

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((7 + 4\sqrt{3})^{|x| - 8} + (7 - 4\sqrt{3})^{|x| - 8} = 14\), we will follow these steps: ### Step 1: Simplify the Equation First, we note that: \[ (7 + 4\sqrt{3})(7 - 4\sqrt{3}) = 49 - 48 = 1 \] This implies: \[ 7 - 4\sqrt{3} = \frac{1}{7 + 4\sqrt{3}} \] Thus, we can rewrite the equation as: \[ (7 + 4\sqrt{3})^{|x| - 8} + \left(\frac{1}{7 + 4\sqrt{3}}\right)^{|x| - 8} = 14 \] This simplifies to: \[ (7 + 4\sqrt{3})^{|x| - 8} + (7 + 4\sqrt{3})^{-|x| + 8} = 14 \] ### Step 2: Let \( t = (7 + 4\sqrt{3})^{|x| - 8} \) Now, we can substitute \( t \): \[ t + \frac{1}{t} = 14 \] Multiplying through by \( t \) gives: \[ t^2 - 14t + 1 = 0 \] ### Step 3: Solve the Quadratic Equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 1 \), \( b = -14 \), and \( c = 1 \). \[ t = \frac{14 \pm \sqrt{(-14)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] Calculating the discriminant: \[ t = \frac{14 \pm \sqrt{196 - 4}}{2} = \frac{14 \pm \sqrt{192}}{2} = \frac{14 \pm 8\sqrt{3}}{2} = 7 \pm 4\sqrt{3} \] ### Step 4: Find Values of \( |x| - 8 \) Now we have two values for \( t \): 1. \( t = 7 + 4\sqrt{3} \) 2. \( t = 7 - 4\sqrt{3} \) For each \( t \): 1. **For \( t = 7 + 4\sqrt{3} \)**: \[ (7 + 4\sqrt{3})^{|x| - 8} = 7 + 4\sqrt{3} \] This implies: \[ |x| - 8 = 1 \quad \Rightarrow \quad |x| = 9 \] Thus, \( x = 9 \) or \( x = -9 \). 2. **For \( t = 7 - 4\sqrt{3} \)**: \[ (7 + 4\sqrt{3})^{|x| - 8} = 7 - 4\sqrt{3} \] Since \( 7 - 4\sqrt{3} = (7 + 4\sqrt{3})^{-1} \), we have: \[ |x| - 8 = -1 \quad \Rightarrow \quad |x| = 7 \] Thus, \( x = 7 \) or \( x = -7 \). ### Step 5: Count the Real Roots From both cases, we have the following values for \( x \): - From \( |x| = 9 \): \( x = 9, -9 \) - From \( |x| = 7 \): \( x = 7, -7 \) Thus, the total number of real roots is: \[ \text{Total roots} = 4 \quad (9, -9, 7, -7) \] ### Final Answer The number of real roots of the equation is **4**.
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

If (7+4sqrt(3))^(x^(2-8))+(7-4sqrt(3))^(x^(2-8))=14, then x=

The number of real roots of (6 - x)^(4) + (8 - x)^(4) = 16 , is

The number of real solutions of sqrt(x^2-4x+3)+sqrt(x^2-9)=sqrt(4x^2-14x+6)

The number of real solutions the equation sqrt(x+14-8sqrt(x-2))+sqrt(x+23-10sqrt(x-2))=3 are

The number of real roots of 3^2x^2-7x+7=9 is (A) 0 (B) 2 (C) 1 (D) 4

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

Number of roots of cos^2x+(sqrt(3)+1)/2sinx-(sqrt(3))/4-1=0 which lie in the interval [-pi,pi] is 2 (b) 4 (c) 6 (d) 8

Number of roots of cos^2x+(sqrt(3)+1)/2sinx-(sqrt(3))/4-1=0 which lie in the interval [-pi,pi] is 2 (b) 4 (c) 6 (d) 8

Draw the graph of y=x^(4)+2x^(2)-8x+3 Find the number of real roots of the equation x^(4)+2x^(2)-8x+3=0 . Also find the sum of the integral parts of all real roots.

The product of the roots of the equation 3sqrt(8+x)+3sqrt(8-x)=1 , is

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -JEE Advance ( Archive )
  1. The number of real roots of (7+4sqrt(3))^(|x|- 8)+(7-4sqrt(3))^(|x|-8)...

    Text Solution

    |

  2. Let alpha, beta be the roots of the equationpx^(2)+qx+r=0, p!=0. If p,...

    Text Solution

    |

  3. Let p and q real number such that p!= 0,p^3!=q and p^3!=-q. if alpha a...

    Text Solution

    |

  4. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  5. If alpha and beta are the roots of the equation x^2+ax+b=0 and alpha^4...

    Text Solution

    |

  6. The sum of all real values of x satisfying the equation (x^(2) -5x+5)...

    Text Solution

    |

  7. Let a and b are the roots of the equation x^2-10 xc -11d =0 and those...

    Text Solution

    |

  8. If alpha,beta are the roots of a x^2+b x+c=0,(a!=0) and alpha+delta,be...

    Text Solution

    |

  9. If one root of the quadratic equation ax^(2) + bx + c = 0 is equal ...

    Text Solution

    |

  10. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  11. If alpha,beta are roots of x^2+-p x+1=0a n dgamma,delta are the roots ...

    Text Solution

    |

  12. If a in R and the equation =-3(x-[x])^(2)+2(x-[x])+a^(2)=0 (where [x...

    Text Solution

    |

  13. If x^(2) + (a - b) x + (1 - a - b) = 0, where a , b in R , then find ...

    Text Solution

    |

  14. Let a ,b ,c be real. If a x^2+b x+c=0 has two real roots alphaa n dbet...

    Text Solution

    |

  15. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  16. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  17. Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,...

    Text Solution

    |

  18. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |

  19. If 3^(x)=4^(x-1), then x is equal to

    Text Solution

    |

  20. The value of 6+ log(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sq...

    Text Solution

    |

  21. The largest interval for whichx^(12)+x^9+x^4-x+1>0 -4<xlt=0 b. 0<x<1 ...

    Text Solution

    |