Home
Class 12
MATHS
If z=(1)/(2)(sqrt(3)-i), then the least ...

If `z=(1)/(2)(sqrt(3)-i)`, then the least possible integral value of `m` such that `(z^(101)+i^(109))^(106)=z^(m+1)` is

Text Solution

Verified by Experts

The correct Answer is:
10
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If z=(1+i)/sqrt2 , then the value of z^1929 is

If |z +1| = z + 2(1 - i) , then the value of z

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)dot

1. If |z-2+i|≤ 2 then find the greatest and least value of | z|

If z_(1),z_(2),z_(3) are the vertices of an equilational triangle ABC such that |z_(1)-i|=|z_(2)- i| = |z_(3)-i|, then |z_(1)+z_(2)+z_(3)| equals to

If n is a positive integer, prove that |I m(z^n)|lt=n|I m(z)||z|^(n-1.)

1. If |z-2+i| ≤ 2 then find the greatest and least value of | z|