Home
Class 12
MATHS
If 0ltargzlepi//4 find the least vlaue o...

If `0ltargzlepi//4` find the least vlaue of `sqrt2|z-1|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of \( \sqrt{2} |z - 1| \) given that \( 0 < \arg z \leq \frac{\pi}{4} \), we can follow these steps: ### Step 1: Understand the Argument Condition The condition \( 0 < \arg z \leq \frac{\pi}{4} \) indicates that the complex number \( z \) lies in the first quadrant between the positive x-axis and the line \( y = x \). ### Step 2: Express \( z \) in Terms of Cartesian Coordinates Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. The argument of \( z \) can be expressed as: \[ \arg z = \tan^{-1}\left(\frac{y}{x}\right) \] Given the argument condition, we have: \[ 0 < \frac{y}{x} \leq 1 \implies 0 < y \leq x \] ### Step 3: Find the Expression for \( |z - 1| \) We need to calculate \( |z - 1| \): \[ |z - 1| = |(x - 1) + iy| = \sqrt{(x - 1)^2 + y^2} \] ### Step 4: Substitute \( y \) in Terms of \( x \) Since \( y \leq x \), we can express \( y \) as \( y = kx \) where \( 0 < k \leq 1 \). Thus, we can rewrite \( |z - 1| \): \[ |z - 1| = \sqrt{(x - 1)^2 + (kx)^2} = \sqrt{(x - 1)^2 + k^2x^2} \] ### Step 5: Minimize \( \sqrt{2} |z - 1| \) We want to minimize: \[ \sqrt{2} |z - 1| = \sqrt{2} \sqrt{(x - 1)^2 + k^2x^2} \] This simplifies to: \[ \sqrt{2} \sqrt{(x - 1)^2 + k^2x^2} = \sqrt{2((x - 1)^2 + k^2x^2)} \] ### Step 6: Analyze the Function To find the minimum value, we can analyze the function geometrically. The point \( (1, 0) \) represents the complex number \( 1 \) on the complex plane, and we want to find the perpendicular distance from the line \( y = x \) to the point \( (1, 0) \). ### Step 7: Calculate the Perpendicular Distance The distance \( d \) from a point \( (x_0, y_0) \) to the line \( Ax + By + C = 0 \) is given by: \[ d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \] For the line \( y = x \) (or \( x - y = 0 \)), we have \( A = 1, B = -1, C = 0 \), and the point \( (1, 0) \): \[ d = \frac{|1 \cdot 1 + (-1) \cdot 0 + 0|}{\sqrt{1^2 + (-1)^2}} = \frac{1}{\sqrt{2}} \] ### Step 8: Final Calculation Now substituting back into our expression: \[ \sqrt{2} |z - 1| = \sqrt{2} \cdot \frac{1}{\sqrt{2}} = 1 \] Thus, the least value of \( \sqrt{2} |z - 1| \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 2|50 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

Least value of |z-2|+|z-4i| is

4.Find the value of "1/(sqrt5+sqrt2)

The least vlaue of (1)/(5cosx+12sinx+15), is

1. If |z-2+i|≤ 2 then find the greatest and least value of | z|

1. If |z-2+i| ≤ 2 then find the greatest and least value of | z|

If |z+4|lt=3 then find the greatest and least values of |z+1|dot

Find the gratest and the least values of |z_(1)+z_(2)|, if z_(1)=24+7iand |z_(2)|=6," where "i=sqrt(-1)

Statement-1 : IF |z+1/z| =a , where z is a complex number and a is a real number, the least and greatest values of |z| are (sqrt(a^(2)+4-a))/2 and (sqrt(a^(2)+ 4)+a)/2 and Statement -2 : For a equal ot zero the greatest and the least values of |z| are equal .

Find the greatest and the least value of |z_1+z_2| if z_1=24+7ia n d|z_2|=6.

Find the greatest and the least value of |z_1+z_2| if z_1=24+7ia n d|z_2|=6.