Home
Class 12
MATHS
The length of the chord joining the poin...

The length of the chord joining the points ( `4cos theta , 4 sin theta ) ` and `[ 4 cos ( theta + 60^(@)), 4 sin ( theta + 60^(@))]` of the circle `x^(2) +y^(2) =16` is `:`

A

4

B

6

C

2

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the chord joining the points \((4 \cos \theta, 4 \sin \theta)\) and \((4 \cos(\theta + 60^\circ), 4 \sin(\theta + 60^\circ))\) on the circle defined by the equation \(x^2 + y^2 = 16\), we will follow these steps: ### Step 1: Identify the Points The points are given as: - Point 1: \(P_1 = (4 \cos \theta, 4 \sin \theta)\) - Point 2: \(P_2 = (4 \cos(\theta + 60^\circ), 4 \sin(\theta + 60^\circ))\) ### Step 2: Use the Angle Addition Formulas We can express \(P_2\) using the angle addition formulas: \[ \cos(\theta + 60^\circ) = \cos \theta \cos 60^\circ - \sin \theta \sin 60^\circ \] \[ \sin(\theta + 60^\circ) = \sin \theta \cos 60^\circ + \cos \theta \sin 60^\circ \] Substituting \(\cos 60^\circ = \frac{1}{2}\) and \(\sin 60^\circ = \frac{\sqrt{3}}{2}\): \[ P_2 = \left(4 \left(\cos \theta \cdot \frac{1}{2} - \sin \theta \cdot \frac{\sqrt{3}}{2}\right), 4 \left(\sin \theta \cdot \frac{1}{2} + \cos \theta \cdot \frac{\sqrt{3}}{2}\right)\right) \] This simplifies to: \[ P_2 = \left(2 \cos \theta - 2\sqrt{3} \sin \theta, 2 \sin \theta + 2\sqrt{3} \cos \theta\right) \] ### Step 3: Calculate the Length of the Chord The length of the chord can be calculated using the distance formula: \[ \text{Length} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Substituting \(P_1\) and \(P_2\): \[ \text{Length} = \sqrt{(2 \cos \theta - 2\sqrt{3} \sin \theta - 4 \cos \theta)^2 + (2 \sin \theta + 2\sqrt{3} \cos \theta - 4 \sin \theta)^2} \] This simplifies to: \[ = \sqrt{(-2 \cos \theta - 2\sqrt{3} \sin \theta)^2 + (-2 \sin \theta + 2\sqrt{3} \cos \theta)^2} \] ### Step 4: Expand and Simplify Expanding the squares: \[ = \sqrt{(2(\sqrt{3} \sin \theta + \cos \theta))^2 + (2(\sqrt{3} \cos \theta - \sin \theta))^2} \] \[ = 2 \sqrt{(\sqrt{3} \sin \theta + \cos \theta)^2 + (\sqrt{3} \cos \theta - \sin \theta)^2} \] ### Step 5: Further Simplification Calculating the squares: \[ (\sqrt{3} \sin \theta + \cos \theta)^2 = 3 \sin^2 \theta + 2\sqrt{3} \sin \theta \cos \theta + \cos^2 \theta \] \[ (\sqrt{3} \cos \theta - \sin \theta)^2 = 3 \cos^2 \theta - 2\sqrt{3} \sin \theta \cos \theta + \sin^2 \theta \] Combining these: \[ = 4 (\sin^2 \theta + \cos^2 \theta) + 2\sqrt{3} \sin \theta \cos \theta \] Since \(\sin^2 \theta + \cos^2 \theta = 1\): \[ = 4 + 2\sqrt{3} \sin \theta \cos \theta \] ### Step 6: Final Calculation Thus, the length of the chord is: \[ = 2 \sqrt{4 + 2\sqrt{3} \sin \theta \cos \theta} \] However, since the angle between the points is \(60^\circ\), we can directly calculate the length of the chord using the formula for the length of a chord in a circle: \[ L = 2r \sin\left(\frac{\theta}{2}\right) \] where \(r = 4\) and \(\theta = 60^\circ\): \[ L = 2 \cdot 4 \cdot \sin(30^\circ) = 8 \cdot \frac{1}{2} = 4 \] ### Conclusion The length of the chord is \(4\).
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    VMC MODULES ENGLISH|Exercise LEVEL-2|50 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

([cos theta+i sin theta)/(sin theta+i cos theta))^(4)=?

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Solve : 7 sin^(2) theta + 3 cos^(2) theta = 4 .

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

Evaluate : int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta

The number of values of theta satisfying 4 cos theta+3 sin theta=5 as well as 3 cos theta + 4 sin theta = 5 is

Prove that cos theta cos 2 theta cos 4 theta…. Cos 2 ^(n-1) theta = ( sin ( 2 ^(n) theta))/( 2 ^(n) (sin theta)) .

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

VMC MODULES ENGLISH-CIRCLES-LEVEL-1
  1. The length of the chord of the circle x^2+y^2=25 joining the points, t...

    Text Solution

    |

  2. If the polar of a point (p,q) with respect to the circle x^2 +y^2=a^2 ...

    Text Solution

    |

  3. The length of the chord joining the points ( 4cos theta , 4 sin theta ...

    Text Solution

    |

  4. The circles x^(2)+ y^(2) -6x-2y +9 = 0 and x^(2) + y^(2) =18 are such...

    Text Solution

    |

  5. Consider the circles x^2+(y-1)^2=9,(x-1)^2+y^2=25. They are such that ...

    Text Solution

    |

  6. Equation of the circle touching the circle x^(2) + y^(2) -15x + 5y =0 ...

    Text Solution

    |

  7. If the two circles x^(2) + y^(2) =4 and x^(2) +y^(2) - 24x - 10y +a^(2...

    Text Solution

    |

  8. If the two circles (x+1)^2+(y-3)^2=r^2 and x^2+y^2-8x+2y+8=0 intersect...

    Text Solution

    |

  9. Statement 1 : The number of common tangents to the circles x^(2) +y^(2...

    Text Solution

    |

  10. Statement 1: The number of common tangents to the circles x^(2) + y^(2...

    Text Solution

    |

  11. The number of common tangents of the circles x^(2) +y^(2) =16 and x^(2...

    Text Solution

    |

  12. Show that the common tangents to the circles x^(2)+y^(2)-6x=0andx^(2)+...

    Text Solution

    |

  13. The circles having radii r(1) and r(2) intersect orthogonally. The len...

    Text Solution

    |

  14. Two vertices of an equilateral triangle are (-1,0) and (1, 0), and its...

    Text Solution

    |

  15. If the line y = mx - (m-1) cuts the circle x^2+y^2=4 at two real and d...

    Text Solution

    |

  16. The equation of the circle of radius 2sqrt(2) whose centre lies on the...

    Text Solution

    |

  17. Two tangents to the circle x^2 +y^2=4 at the points A and B meet at P(...

    Text Solution

    |

  18. A foot of the normal from the point (4, 3) to a circle is (2, 1) and a...

    Text Solution

    |

  19. If the common chord of the circles x^(2) + ( y -lambda)^(2) =16 and x^...

    Text Solution

    |

  20. The equation of a circle is x^2+y^2=4. Find the center of the smallest...

    Text Solution

    |