Home
Class 12
MATHS
If the points (2, 0), (0, 1), (4, 5)and ...

If the points (2, 0), (0, 1), (4, 5)and (0, c) are concyclic, then the value of c, is

A

1

B

`14//3`

C

5

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( c \) such that the points \( (2, 0) \), \( (0, 1) \), \( (4, 5) \), and \( (0, c) \) are concyclic, we can use the property that four points are concyclic if the determinant of the following matrix is zero: \[ \begin{vmatrix} x_1 & y_1 & x_1^2 + y_1^2 & 1 \\ x_2 & y_2 & x_2^2 + y_2^2 & 1 \\ x_3 & y_3 & x_3^2 + y_3^2 & 1 \\ x_4 & y_4 & x_4^2 + y_4^2 & 1 \\ \end{vmatrix} = 0 \] ### Step 1: Set up the points Let: - \( (x_1, y_1) = (2, 0) \) - \( (x_2, y_2) = (0, 1) \) - \( (x_3, y_3) = (4, 5) \) - \( (x_4, y_4) = (0, c) \) ### Step 2: Calculate \( x^2 + y^2 \) for each point - For \( (2, 0) \): \( x_1^2 + y_1^2 = 2^2 + 0^2 = 4 \) - For \( (0, 1) \): \( x_2^2 + y_2^2 = 0^2 + 1^2 = 1 \) - For \( (4, 5) \): \( x_3^2 + y_3^2 = 4^2 + 5^2 = 16 + 25 = 41 \) - For \( (0, c) \): \( x_4^2 + y_4^2 = 0^2 + c^2 = c^2 \) ### Step 3: Construct the determinant The determinant becomes: \[ \begin{vmatrix} 2 & 0 & 4 & 1 \\ 0 & 1 & 1 & 1 \\ 4 & 5 & 41 & 1 \\ 0 & c & c^2 & 1 \\ \end{vmatrix} \] ### Step 4: Calculate the determinant Expanding this determinant: \[ = 2 \begin{vmatrix} 1 & 1 & 1 \\ 5 & 41 & 1 \\ c & c^2 & 1 \\ \end{vmatrix} - 0 + 4 \begin{vmatrix} 0 & 1 & 1 \\ 4 & 41 & 1 \\ 0 & c^2 & 1 \\ \end{vmatrix} - 1 \begin{vmatrix} 0 & 1 & 4 \\ 4 & 5 & 41 \\ 0 & c & c^2 \\ \end{vmatrix} \] Calculating each of these 3x3 determinants: 1. The first determinant: \[ = 1 \begin{vmatrix} 5 & 1 \\ c & 1 \\ \end{vmatrix} - 1 \begin{vmatrix} 4 & 1 \\ 0 & 1 \\ \end{vmatrix} + 1 \begin{vmatrix} 4 & 5 \\ 0 & c \\ \end{vmatrix} \] \[ = 5 - 4 + 4c = 1 + 4c \] 2. The second determinant: \[ = 0 - 1 \cdot (4c^2 - 0) = -4c^2 \] 3. The third determinant: \[ = 0 - 1 \cdot (4c - 0) = -4c \] Putting it all together: \[ 2(1 + 4c) + 4(-4c^2) - (-4c) = 0 \] \[ 2 + 8c - 16c^2 + 4c = 0 \] \[ -16c^2 + 12c + 2 = 0 \] ### Step 5: Solve the quadratic equation Dividing through by -2: \[ 8c^2 - 6c - 1 = 0 \] Using the quadratic formula: \[ c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 8 \cdot (-1)}}{2 \cdot 8} \] \[ = \frac{6 \pm \sqrt{36 + 32}}{16} = \frac{6 \pm \sqrt{68}}{16} = \frac{6 \pm 2\sqrt{17}}{16} = \frac{3 \pm \sqrt{17}}{8} \] ### Step 6: Find the value of \( c \) The two possible values for \( c \) are: \[ c = \frac{3 + \sqrt{17}}{8} \quad \text{and} \quad c = \frac{3 - \sqrt{17}}{8} \] ### Final Answer The values of \( c \) that make the points concyclic are \( \frac{3 + \sqrt{17}}{8} \) and \( \frac{3 - \sqrt{17}}{8} \).
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    VMC MODULES ENGLISH|Exercise LEVEL-2|50 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If the points (2, 3), (0, 2), (4, 5) and (0, t) are concyclic, then t^(3) + 17 is equal to __________.

If the points (0,0), (1,0), (0,1) and (t, t) are concyclic, then t is equal to

If the points (a, 0), (b,0), (0, c) , and (0, d) are concyclic (a, b, c, d > 0) , then prove that ab = cd .

If the points A(1,2) , B(0,0) and C (a,b) are collinear , then

Show that the points ( 1,0),(2,-7) , (8,1) and (9,-6) are concyclic.

Show that the points (0,3),(-6,0),(-1,5) and (-4,-1) are concyclic.

Show that the points A (1, 0), B(5, 3), C (2, 7) and D(-2, 4) are the vertices of a rhombus.

The function f is defined by f(x)=x^4-4x^4 -x^2+cx -12 , where c is a constant.In the xy-plane, the graph of f intersects the x-axis in the four points (-2,0), (1,0), (p,0), and (q,0). What is the value of c ?

Show that the points A(1,\ 0),\ \ B(5,\ 3),\ \ C(2,\ 7) and D(-2,\ 4) are the vertices of a parallelogram.

y^(2)=4x and y^(2)=-8(x-a) intersect at points A and C. Points O (0,0) , A, B (a,0) , and C are concyclic. The length of the common chord of the parabolas is

VMC MODULES ENGLISH-CIRCLES-LEVEL-1
  1. The locus of the centre of the circles which touches both the axes is ...

    Text Solution

    |

  2. The circumcentre of the triangle formed by the lines, xy + 2x + 2y + 4...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. The line ax+by+by+c=0 is normal to the circle x^(2)+y^(2)+2gx+2fy+d=0...

    Text Solution

    |

  5. If the points (2, 0), (0, 1), (4, 5)and (0, c) are concyclic, then th...

    Text Solution

    |

  6. If a circle of constant radius 3k passes through the origin O and meet...

    Text Solution

    |

  7. Find the equation of the circle passing through (1,0)a n d(0,1) and ha...

    Text Solution

    |

  8. The equation of the circle which touches the axes of coordinates an...

    Text Solution

    |

  9. The circle x^(2)+y^(2)+4x-7y+12=0 cuts an intercept on Y-axis is of le...

    Text Solution

    |

  10. The shortest distance from the point (2,-7) to thwe circe x^(2)+y^(2)-...

    Text Solution

    |

  11. Find the number of integral values of lambda for which x^2+y^2+lambdax...

    Text Solution

    |

  12. Prove that the length of the common chord of the two circles : (x-a)...

    Text Solution

    |

  13. Find the number of common tangents that can be drawn to the circles...

    Text Solution

    |

  14. Show that the circles x^(2) + y^(2) + 2 x -6 y + 9 = 0 and x^(2) +y^(2...

    Text Solution

    |

  15. If two circles (x-1)^(2)+(y-3)^(2)=r^(2) and x^(2)+y^(2)-8x+2y+8=0 int...

    Text Solution

    |

  16. The abscissa of the two points A and B are the roots of the equation x...

    Text Solution

    |

  17. If circles x^(2) + y^(2) + 2g(1)x + 2f(1)y = 0 and x^(2) + y^(2) ...

    Text Solution

    |

  18. Two vertices of an equilateral triangle are (-1,0) and (1, 0), and its...

    Text Solution

    |

  19. If the line y = mx - (m-1) cuts the circle x^2+y^2=4 at two real and d...

    Text Solution

    |

  20. The length of the chord of the circle x^(2)+y^(2)=9 passing through (...

    Text Solution

    |