Home
Class 12
MATHS
How many ordered pair of integers ( a,b)...

How many ordered pair of integers ( a,b) satisfy all the following inequalities `a^(2) +b^(2) lt 16 , a^(2) +b^(2) lt 8 a,a^(2) +b^(2) lt 8b ` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding how many ordered pairs of integers (a, b) satisfy the inequalities \( a^2 + b^2 < 16 \), \( a^2 + b^2 < 8 \), and \( a^2 + b^2 < 8b \), we will analyze each inequality step by step. ### Step 1: Analyze \( a^2 + b^2 < 16 \) This inequality describes a circle with radius 4 centered at the origin (0, 0). The integer points (a, b) that lie inside this circle must satisfy \( a^2 + b^2 < 16 \). - The possible integer values for \( a \) and \( b \) can be found by checking values from -4 to 4 (since \( 4^2 = 16 \)). - We will check each integer value of \( a \) and find the corresponding integer values of \( b \) that satisfy the inequality. 1. **For \( a = 0 \)**: - \( b^2 < 16 \) → \( b \) can be -3, -2, -1, 0, 1, 2, 3 (7 values). 2. **For \( a = 1 \)**: - \( 1^2 + b^2 < 16 \) → \( b^2 < 15 \) → \( b \) can be -3, -2, -1, 0, 1, 2, 3 (7 values). 3. **For \( a = 2 \)**: - \( 2^2 + b^2 < 16 \) → \( b^2 < 12 \) → \( b \) can be -3, -2, -1, 0, 1, 2 (6 values). 4. **For \( a = 3 \)**: - \( 3^2 + b^2 < 16 \) → \( b^2 < 7 \) → \( b \) can be -2, -1, 0, 1, 2 (5 values). 5. **For \( a = 4 \)**: - \( 4^2 + b^2 < 16 \) → \( b^2 < 0 \) → No valid values for \( b \). Now, we can summarize the counts: - For \( a = 0 \): 7 values - For \( a = 1 \): 7 values - For \( a = 2 \): 6 values - For \( a = 3 \): 5 values - For \( a = -1 \): 7 values (by symmetry) - For \( a = -2 \): 6 values - For \( a = -3 \): 5 values - For \( a = -4 \): 0 values Calculating the total: - Total pairs from \( a = 0 \) to \( a = 3 \): \( 7 + 7 + 6 + 5 = 25 \) - Total pairs from \( a = -1 \) to \( a = -3 \): \( 7 + 6 + 5 = 18 \) Thus, for the first inequality, we have \( 25 + 18 = 43 \) pairs. ### Step 2: Analyze \( a^2 + b^2 < 8 \) This inequality describes a circle with radius \( \sqrt{8} \) (approximately 2.83) centered at the origin. 1. **For \( a = 0 \)**: - \( b^2 < 8 \) → \( b \) can be -2, -1, 0, 1, 2 (5 values). 2. **For \( a = 1 \)**: - \( 1^2 + b^2 < 8 \) → \( b^2 < 7 \) → \( b \) can be -2, -1, 0, 1, 2 (5 values). 3. **For \( a = 2 \)**: - \( 2^2 + b^2 < 8 \) → \( b^2 < 4 \) → \( b \) can be -1, 0, 1 (3 values). 4. **For \( a = -1 \)** and \( a = -2 \): Same counts as \( a = 1 \) and \( a = 2 \). Calculating the total: - For \( a = 0 \): 5 values - For \( a = 1 \): 5 values - For \( a = 2 \): 3 values - For \( a = -1 \): 5 values - For \( a = -2 \): 3 values Thus, for the second inequality, we have \( 5 + 5 + 3 + 5 + 3 = 21 \) pairs. ### Step 3: Analyze \( a^2 + b^2 < 8b \) Rearranging gives \( a^2 + b^2 - 8b < 0 \) or \( a^2 + (b - 4)^2 < 16 \). This describes a circle centered at (0, 4) with radius 4. 1. **For \( b = 0 \)**: - \( a^2 + 16 < 16 \) → No valid values for \( a \). 2. **For \( b = 1 \)**: - \( a^2 + 9 < 16 \) → \( a \) can be -3, -2, -1, 0, 1, 2, 3 (7 values). 3. **For \( b = 2 \)**: - \( a^2 + 4 < 16 \) → \( a \) can be -3, -2, -1, 0, 1, 2, 3 (7 values). 4. **For \( b = 3 \)**: - \( a^2 + 1 < 16 \) → \( a \) can be -3, -2, -1, 0, 1, 2, 3 (7 values). 5. **For \( b = 4 \)**: - \( a^2 < 0 \) → No valid values for \( a \). Calculating the total: - For \( b = 1 \): 7 values - For \( b = 2 \): 7 values - For \( b = 3 \): 7 values Thus, for the third inequality, we have \( 7 + 7 + 7 = 21 \) pairs. ### Step 4: Combine the results The ordered pairs must satisfy all three inequalities. The most restrictive condition is \( a^2 + b^2 < 8 \), which gives us 21 pairs. ### Final Answer Thus, the number of ordered pairs of integers \( (a, b) \) that satisfy all the given inequalities is **21**.
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE )|29 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise LEVEL-2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The number of integers that satisfy the inequality x^(2)+48lt16x is

Find the number of positive integers satisfying the inequality x^(2) -10x+16lt 0.

Find the number of positive integers satisfying the inequality x^(2) -10x+16lt 0.

How many integer values of x satisfy the inequality (32)/(243) lt ((2)/(3))^(x^(2)) lt (9)/(4) ((8)/(27))^(x)

The set of all values of x, measured in radians, satisfying the two inequalities 2 cos^(2)x lt 2-3 cos x and x^(2) lt 4x+12 , is

How many integer value of x satisfy 5 + 2 |2x -3| lt 19 ?

The number of ordered pairs (a,b) where a,b are integers satisfying the inequality min (x ^(2) +(a-b) x + (1-a-b)) gtmax (-x ^(2) +(a+b)x-(1+a+b)AA x in R, is :

If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1, x in (0, (pi)/(2)) , then the maximum value (b, -a) is :

If a lt 0 and b lt 0 , then (a +b)^(2) gt 0 .

Find the angle between the lines , (a^(2) - ab) y = (ab+b^(2))x+b^(3) , and (ab+b^(2)) y = (ab-a^2)x+a^(3) where a lt b lt 0