Home
Class 12
MATHS
If a point P has co-ordinates (0, -2) an...

If a point P has co-ordinates `(0, -2) and Q` is any point on the circle`x^2+y^2-5x-y+5=0,` then the maximum value of `(PQ)^2` is : (a) `(25+sqrt6)/2` (b) `14+5sqrt3` (c) `(47+10sqrt6)/2` (d) `8+5sqrt3`

A

` ( 25 + sqrt( 5))/( 2)`

B

`8+5 sqrt( 3)`

C

` 14 + 5 sqrt( 3)`

D

`(47+ 10sqrt( 6))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \((PQ)^2\) where \(P\) has coordinates \((0, -2)\) and \(Q\) is any point on the circle given by the equation \(x^2 + y^2 - 5x - y + 5 = 0\). ### Step 1: Find the center and radius of the circle We start by rewriting the equation of the circle in standard form. The given equation is: \[ x^2 + y^2 - 5x - y + 5 = 0 \] We can rearrange it as: \[ x^2 - 5x + y^2 - y + 5 = 0 \] Now, we complete the square for \(x\) and \(y\). For \(x\): \[ x^2 - 5x = (x - \frac{5}{2})^2 - \frac{25}{4} \] For \(y\): \[ y^2 - y = (y - \frac{1}{2})^2 - \frac{1}{4} \] Substituting back into the equation gives: \[ \left(x - \frac{5}{2}\right)^2 - \frac{25}{4} + \left(y - \frac{1}{2}\right)^2 - \frac{1}{4} + 5 = 0 \] Combining the constants: \[ \left(x - \frac{5}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{25}{4} + \frac{1}{4} - 5 \] Calculating the right side: \[ \frac{25 + 1 - 20}{4} = \frac{6}{4} = \frac{3}{2} \] Thus, the center of the circle is \(\left(\frac{5}{2}, \frac{1}{2}\right)\) and the radius is \(\sqrt{\frac{3}{2}}\). ### Step 2: Find the distance from point \(P\) to the center of the circle Next, we need to find the distance from point \(P(0, -2)\) to the center of the circle \(\left(\frac{5}{2}, \frac{1}{2}\right)\). Using the distance formula: \[ d = \sqrt{\left(\frac{5}{2} - 0\right)^2 + \left(\frac{1}{2} - (-2)\right)^2} \] Calculating each part: \[ d = \sqrt{\left(\frac{5}{2}\right)^2 + \left(\frac{1}{2} + 2\right)^2} = \sqrt{\left(\frac{5}{2}\right)^2 + \left(\frac{1}{2} + \frac{4}{2}\right)^2} = \sqrt{\left(\frac{5}{2}\right)^2 + \left(\frac{5}{2}\right)^2} \] This simplifies to: \[ d = \sqrt{2 \cdot \left(\frac{5}{2}\right)^2} = \sqrt{2 \cdot \frac{25}{4}} = \sqrt{\frac{50}{4}} = \frac{5\sqrt{2}}{2} \] ### Step 3: Calculate the maximum distance from \(P\) to any point \(Q\) on the circle The maximum distance from point \(P\) to any point \(Q\) on the circle is the distance from \(P\) to the center plus the radius of the circle: \[ \text{Max distance} = d + r = \frac{5\sqrt{2}}{2} + \sqrt{\frac{3}{2}} \] ### Step 4: Square the maximum distance Now, we need to find \((PQ)^2\): \[ (PQ)^2 = \left(\frac{5\sqrt{2}}{2} + \sqrt{\frac{3}{2}}\right)^2 \] Expanding this: \[ = \left(\frac{5\sqrt{2}}{2}\right)^2 + 2 \cdot \frac{5\sqrt{2}}{2} \cdot \sqrt{\frac{3}{2}} + \left(\sqrt{\frac{3}{2}}\right)^2 \] Calculating each term: 1. \(\left(\frac{5\sqrt{2}}{2}\right)^2 = \frac{25 \cdot 2}{4} = \frac{50}{4} = \frac{25}{2}\) 2. \(2 \cdot \frac{5\sqrt{2}}{2} \cdot \sqrt{\frac{3}{2}} = 5\sqrt{2} \cdot \sqrt{\frac{3}{2}} = 5\sqrt{3}\) 3. \(\left(\sqrt{\frac{3}{2}}\right)^2 = \frac{3}{2}\) Combining these gives: \[ (PQ)^2 = \frac{25}{2} + 5\sqrt{3} + \frac{3}{2} = \frac{28}{2} + 5\sqrt{3} = 14 + 5\sqrt{3} \] ### Final Answer Thus, the maximum value of \((PQ)^2\) is: \[ \boxed{14 + 5\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If tangents P Q and P R are drawn from a point on the circle x^2+y^2=25 to the ellipse (x^2)/16+(y^2)/(b^2)=1,(b (a) (sqrt(5))/4 (b) (sqrt(7))/4 (c) (sqrt(7))/2 (d) (sqrt(5))/3

The value of sqrt(5+2sqrt(6)) is (a) sqrt(3)-sqrt(2) (b) sqrt(3)+sqrt(2) (c) sqrt(5)+sqrt(6) (d) none of these

The line 2x-y+1=0 is tangent to the circle at the point (2, 5) and the center of the circle lies on x-2y=4. The radius of the circle is (a) 3sqrt(5) (b) 5sqrt(3) (c) 2sqrt(5) (d) 5sqrt(2)

Radius of the circle x^2+y^2+2x costheta+2y sin theta-8=0 is 1 2. 3 3. 2sqrt(3) 4. sqrt(10) 5. 2

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is (a) 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)

The length of the tangent from the point (4, 5) to the circle x^2 + y^2 + 2x - 6y = 6 is : (A) sqrt(13) (B) sqrt(38) (C) 2sqrt(2) (D) 2sqrt(13)

the length of intercept made by the line sqrt2x-y-4sqrt2=0 on the parabola y^2=4x is equal to (a) 6sqrt3 (b) 4sqrt3 (c) 8sqrt2 (d) 6sqrt2

Tangent of acute angle between the curves y=|x^2-1| and y=sqrt(7-x^2) at their points of intersection is (a) (5sqrt(3))/2 (b) (3sqrt(5))/2 (5sqrt(3))/4 (d) (3sqrt(5))/4

The point on the curve x^2=2y which is nearest to the point (0, 5) is(A) (2sqrt(2),4) (B) (2sqrt(2),0) (C) (0, 0) (D) (2, 2)

sinx+cosx=y^2-y+a has no value of x for any value of y if a belongs to (a) (0,""sqrt(3)) (b) (-""sqrt(3),0) (c) (-oo,-""sqrt(3)) (d) (""sqrt(3),oo)

VMC MODULES ENGLISH-CIRCLES-JEE MAIN ( ARCHIVE )
  1. about to only mathematics

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. The point lying on common tangent to the circles x^(2)+y^(2)=4 and x^(...

    Text Solution

    |

  4. The angle between a pair of tangents from a point P to the circe x^2 +...

    Text Solution

    |

  5. Let A B C D be a quadrilateral with area 18 , side A B parallel to the...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Let PQ and RS be tangents at the extremities of the diameter PR of a c...

    Text Solution

    |

  8. Tangents are drawn from the point (17, 7) to the circle x^2+y^2=169, ...

    Text Solution

    |

  9. The circle passing through (1, -2) and touching the axis of x at (3...

    Text Solution

    |

  10. The circle passing through the point ( -1,0) and touching the y-axis ...

    Text Solution

    |

  11. A circle passes through the points ( 2,3) and ( 4,5) . If its centre ...

    Text Solution

    |

  12. The tangent to the circle C(1) : x^(2) +y^(2) -2x -1=0 at the point ( ...

    Text Solution

    |

  13. If a circle C, whose radius is 3, touches externally the circle, x^(2)...

    Text Solution

    |

  14. If two parallel chords of a circle, having diameter 4 units, lie on th...

    Text Solution

    |

  15. If a point P has co-ordinates (0, -2) and Q is any point on the circle...

    Text Solution

    |

  16. A line is drawn through the point P(3,11) to cut the circle x^(2)+y^(2...

    Text Solution

    |

  17. The centres of those circles which touch the circle, x^(2)+y^(2)-8x-8y...

    Text Solution

    |

  18. if one of the diameters of the circle, given by the equation, x^(2)+y^...

    Text Solution

    |

  19. A circle passes through (-2, 4) and touches y-axis at (0, 2). Which on...

    Text Solution

    |

  20. Equation of the tangent to the circle at the point (1, -1) whose centr...

    Text Solution

    |