Home
Class 12
MATHS
Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2...

Let `f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):}`
If `lim_(xto(pi)/(2))f(x)=f((pi)/(2)),` find the value of k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that \[ \lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right). \] Given the function: \[ f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases} \] ### Step 1: Find \( f\left(\frac{\pi}{2}\right) \) Since \( f\left(\frac{\pi}{2}\right) = 3 \), we have: \[ f\left(\frac{\pi}{2}\right) = 3. \] ### Step 2: Calculate the limit \( \lim_{x \to \frac{\pi}{2}} f(x) \) We need to calculate the limit as \( x \) approaches \( \frac{\pi}{2} \) from both sides. We will use the expression for \( f(x) \) when \( x \neq \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x}. \] ### Step 3: Substitute \( x = \frac{\pi}{2} + h \) Let \( x = \frac{\pi}{2} + h \), where \( h \to 0 \). Then we have: \[ \lim_{h \to 0} f\left(\frac{\pi}{2} + h\right) = \lim_{h \to 0} \frac{k \cos\left(\frac{\pi}{2} + h\right)}{\pi - 2\left(\frac{\pi}{2} + h\right)}. \] ### Step 4: Simplify the limit expression Using the fact that \( \cos\left(\frac{\pi}{2} + h\right) = -\sin(h) \) and simplifying the denominator: \[ \pi - 2\left(\frac{\pi}{2} + h\right) = \pi - \pi - 2h = -2h. \] Thus, we have: \[ \lim_{h \to 0} \frac{k (-\sin(h))}{-2h} = \lim_{h \to 0} \frac{k \sin(h)}{2h}. \] ### Step 5: Evaluate the limit Using the fact that \( \lim_{h \to 0} \frac{\sin(h)}{h} = 1 \): \[ \lim_{h \to 0} \frac{k \sin(h)}{2h} = \frac{k}{2}. \] ### Step 6: Set the limits equal Now, we set the limit equal to \( f\left(\frac{\pi}{2}\right) \): \[ \frac{k}{2} = 3. \] ### Step 7: Solve for \( k \) Multiplying both sides by 2, we find: \[ k = 6. \] ### Conclusion Thus, the value of \( k \) is \[ \boxed{6}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

The lim_(xto(pi)/2)(cot x-cosx)/((pi-2x)^(3)) equals

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

Evaluate lim_(xto(pi)/(2)) (1+cos2x)/((pi-2x)^(2)).

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b .

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

Let f(x)={{:(a,","x=(pi)/(2)),((sqrt(2x-pi))/(sqrt(9+sqrt(2x-pi))-b),","xgt(pi)/(2)):} . If f(x) is continuous at x=(pi)/(2) , then the value of (a^(2))/(5b) is

If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):} is continuous at x=(pi)/(2) , then the value of ((b)/(a))^(5//3) is

If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is continuous at x=(pi)/(2) , then

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE Advanced (Archive)
  1. Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If l...

    Text Solution

    |

  2. Let g: R -> R be a differentiable function with g(0) = 0,,g'(1)!=0.Let...

    Text Solution

    |

  3. Let f(x)=sin((pi)/(6)sin((pi)/(2)sinx)) " for all "x in R and g(x)=(pi...

    Text Solution

    |

  4. Let f:R to R and h:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  5. Let a , b in R and f:R to R be defined by f(x) =a cos (|x^(3)-x|)+...

    Text Solution

    |

  6. Let f:[-1/2,2] rarr R and g:[-1/2,2] rarr R be functions defined by f(...

    Text Solution

    |

  7. Let [x] be the greatest integer less than or equal to x . Then ,...

    Text Solution

    |

  8. Let f(x)=(1-x(1+|1-x|))/(|1-x|)cos((1)/(1-x))" for "x ne1. then

    Text Solution

    |

  9. Let f be two differentiable function satisfying f(1)=1,f(2)=4, f(3)=9,...

    Text Solution

    |

  10. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  11. The value of lim(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)...

    Text Solution

    |

  12. underset(xrarr(pi)/(4))(lim)(int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/...

    Text Solution

    |

  13. (d^2x)/(dy^2) equals: ((d^2y)/(dx^2))^(-1) (b) -((d^2y)/(dx^2))^(-1)(...

    Text Solution

    |

  14. Let g(x) = log f(x), where f(x) is a twice differentiable positive fun...

    Text Solution

    |

  15. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  16. If underset(xto0)lim[1+xln(1+b^(2))]^(1//x)=2bsin^(2)theta,bgt0," and ...

    Text Solution

    |

  17. Let f(x) = {{:(x^(2)|"cos"(pi)/(x)|",",x ne 0","x in R),(0",",x = 0):}...

    Text Solution

    |

  18. If underset(xtooo)lim((x^(2)+x+1)/(x+1)-ax-b)=4, then

    Text Solution

    |

  19. Let alpha(a) and beta(a) be the roots of the equation ((1+a)^(1/3)-1)x...

    Text Solution

    |

  20. Check the differentiability if f(x) = min. {1, x^(2), x^(3)}.

    Text Solution

    |

  21. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |