Home
Class 12
MATHS
lim(xto0)(|sin x|)/x is equal to :...

`lim_(xto0)(|sin x|)/x` is equal to :

A

1

B

`=-1`

C

Does not exist

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{|\sin x|}{x} \), we will analyze the limit from both the right-hand side and the left-hand side. ### Step 1: Define the limit Let \( L = \lim_{x \to 0} \frac{|\sin x|}{x} \). ### Step 2: Analyze the right-hand limit We first consider the right-hand limit as \( x \) approaches 0 from the positive side (i.e., \( x \to 0^+ \)): \[ \lim_{x \to 0^+} \frac{|\sin x|}{x} = \lim_{x \to 0^+} \frac{\sin x}{x} \] Since \( \sin x \) is positive for \( x > 0 \), we can write: \[ \lim_{x \to 0^+} \frac{\sin x}{x} = 1 \] ### Step 3: Analyze the left-hand limit Next, we consider the left-hand limit as \( x \) approaches 0 from the negative side (i.e., \( x \to 0^- \)): \[ \lim_{x \to 0^-} \frac{|\sin x|}{x} = \lim_{x \to 0^-} \frac{-\sin x}{x} \] In this case, since \( \sin x \) is negative for \( x < 0 \), we have: \[ \lim_{x \to 0^-} \frac{-\sin x}{x} = -\lim_{x \to 0^-} \frac{\sin x}{x} \] Again, we find that: \[ \lim_{x \to 0^-} \frac{\sin x}{x} = 1 \quad \text{(as \( x \) approaches 0)} \] Thus, \[ \lim_{x \to 0^-} \frac{-\sin x}{x} = -1 \] ### Step 4: Compare the limits Now we compare the right-hand limit and the left-hand limit: - Right-hand limit: \( \lim_{x \to 0^+} \frac{|\sin x|}{x} = 1 \) - Left-hand limit: \( \lim_{x \to 0^-} \frac{|\sin x|}{x} = -1 \) Since the right-hand limit (1) is not equal to the left-hand limit (-1), we conclude that the limit does not exist. ### Final Answer Thus, we can say: \[ \lim_{x \to 0} \frac{|\sin x|}{x} \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)[m(sinx)/x] is equal to (where m epsilon I and [.] denotes greatest integer function)

lim _(xto0) (""^(3)sqrt(1+sin ^(2)x )- ""^(4) sqrt(1-2 tan x))/(sin x+ tan ^(2) x) is equal to:

Find the limits of the following: (i)lim_(xto0) (sin3x)/(x)" "(ii)lim_(xto0) (sin7x)/(sin4x)" "(iii)lim_(xto0) (1-cos^(2)x)/(x^(2))

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

Statement 1: lim_(xto0)[(sinx)/x]=0 Statement 2: lim_(xto0)[(sinx)/x]=1

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

lim_(xto0)(sin(picos^(2)(tan(sinx))))/(x^(2)) is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE Advanced (Archive)
  1. lim(xto0)(|sin x|)/x is equal to :

    Text Solution

    |

  2. Let g: R -> R be a differentiable function with g(0) = 0,,g'(1)!=0.Let...

    Text Solution

    |

  3. Let f(x)=sin((pi)/(6)sin((pi)/(2)sinx)) " for all "x in R and g(x)=(pi...

    Text Solution

    |

  4. Let f:R to R and h:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  5. Let a , b in R and f:R to R be defined by f(x) =a cos (|x^(3)-x|)+...

    Text Solution

    |

  6. Let f:[-1/2,2] rarr R and g:[-1/2,2] rarr R be functions defined by f(...

    Text Solution

    |

  7. Let [x] be the greatest integer less than or equal to x . Then ,...

    Text Solution

    |

  8. Let f(x)=(1-x(1+|1-x|))/(|1-x|)cos((1)/(1-x))" for "x ne1. then

    Text Solution

    |

  9. Let f be two differentiable function satisfying f(1)=1,f(2)=4, f(3)=9,...

    Text Solution

    |

  10. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  11. The value of lim(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)...

    Text Solution

    |

  12. underset(xrarr(pi)/(4))(lim)(int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/...

    Text Solution

    |

  13. (d^2x)/(dy^2) equals: ((d^2y)/(dx^2))^(-1) (b) -((d^2y)/(dx^2))^(-1)(...

    Text Solution

    |

  14. Let g(x) = log f(x), where f(x) is a twice differentiable positive fun...

    Text Solution

    |

  15. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  16. If underset(xto0)lim[1+xln(1+b^(2))]^(1//x)=2bsin^(2)theta,bgt0," and ...

    Text Solution

    |

  17. Let f(x) = {{:(x^(2)|"cos"(pi)/(x)|",",x ne 0","x in R),(0",",x = 0):}...

    Text Solution

    |

  18. If underset(xtooo)lim((x^(2)+x+1)/(x+1)-ax-b)=4, then

    Text Solution

    |

  19. Let alpha(a) and beta(a) be the roots of the equation ((1+a)^(1/3)-1)x...

    Text Solution

    |

  20. Check the differentiability if f(x) = min. {1, x^(2), x^(3)}.

    Text Solution

    |

  21. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |