Home
Class 12
MATHS
If f(x) = (tanx)/(x-pi), then lim(xto(pi...

If `f(x) = (tanx)/(x-pi)`, then `lim_(xto(pi))f(x)=`……………….

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (tanx)/(x-pi) , then lim_(xrarr(pi))f(x)= ……………….

If f(x)=(tanx)/(x) , then find lim_(xto0)([f(x)]+x^(2))^((1)/({f(x)})) , where [.] and {.} denotes greatest integer and fractional part function respectively.

Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))) , then lim_(xto1^(-))f(x)=0 and lim_(xto2^(-))f(x)=2 Statement 2: lim_(xtooo)cot^(-1)x=0 and lim_(xto -oo)cot^(-1)x=pi

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to (a) 0 (b) pi (c) 2pi (d) none of these

If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim_(xto oo)f(x) is

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE Advanced (Archive)
  1. If f(x) = (tanx)/(x-pi), then lim(xto(pi))f(x)=……………….

    Text Solution

    |

  2. Let g: R -> R be a differentiable function with g(0) = 0,,g'(1)!=0.Let...

    Text Solution

    |

  3. Let f(x)=sin((pi)/(6)sin((pi)/(2)sinx)) " for all "x in R and g(x)=(pi...

    Text Solution

    |

  4. Let f:R to R and h:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  5. Let a , b in R and f:R to R be defined by f(x) =a cos (|x^(3)-x|)+...

    Text Solution

    |

  6. Let f:[-1/2,2] rarr R and g:[-1/2,2] rarr R be functions defined by f(...

    Text Solution

    |

  7. Let [x] be the greatest integer less than or equal to x . Then ,...

    Text Solution

    |

  8. Let f(x)=(1-x(1+|1-x|))/(|1-x|)cos((1)/(1-x))" for "x ne1. then

    Text Solution

    |

  9. Let f be two differentiable function satisfying f(1)=1,f(2)=4, f(3)=9,...

    Text Solution

    |

  10. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  11. The value of lim(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)...

    Text Solution

    |

  12. underset(xrarr(pi)/(4))(lim)(int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/...

    Text Solution

    |

  13. (d^2x)/(dy^2) equals: ((d^2y)/(dx^2))^(-1) (b) -((d^2y)/(dx^2))^(-1)(...

    Text Solution

    |

  14. Let g(x) = log f(x), where f(x) is a twice differentiable positive fun...

    Text Solution

    |

  15. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  16. If underset(xto0)lim[1+xln(1+b^(2))]^(1//x)=2bsin^(2)theta,bgt0," and ...

    Text Solution

    |

  17. Let f(x) = {{:(x^(2)|"cos"(pi)/(x)|",",x ne 0","x in R),(0",",x = 0):}...

    Text Solution

    |

  18. If underset(xtooo)lim((x^(2)+x+1)/(x+1)-ax-b)=4, then

    Text Solution

    |

  19. Let alpha(a) and beta(a) be the roots of the equation ((1+a)^(1/3)-1)x...

    Text Solution

    |

  20. Check the differentiability if f(x) = min. {1, x^(2), x^(3)}.

    Text Solution

    |

  21. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |