Home
Class 12
MATHS
If lim(xto3^(+))x/([x])is ....

If `lim_(xto3^(+))x/([x])`is ________________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 3^+} \frac{x}{[x]} \), where \([x]\) denotes the greatest integer function (also known as the floor function), we can follow these steps: ### Step-by-Step Solution 1. **Understanding the Limit**: We need to evaluate the limit as \( x \) approaches 3 from the right, denoted as \( 3^+ \). This means we are considering values of \( x \) that are slightly greater than 3. 2. **Expressing the Limit**: We can rewrite the limit as: \[ \lim_{x \to 3^+} \frac{x}{[x]} \] 3. **Substituting Values**: As \( x \) approaches 3 from the right, \( x \) can be expressed as \( 3 + h \), where \( h \) is a small positive number (i.e., \( h \to 0^+ \)). Thus, we can rewrite the limit: \[ \lim_{h \to 0^+} \frac{3 + h}{[3 + h]} \] 4. **Evaluating the Greatest Integer Function**: For \( x = 3 + h \) (where \( h \) is a small positive number), the greatest integer function \([3 + h]\) will equal 3, because \( 3 + h \) is still less than 4. Therefore, we have: \[ [3 + h] = 3 \] 5. **Substituting into the Limit**: Now we can substitute this back into our limit: \[ \lim_{h \to 0^+} \frac{3 + h}{3} \] 6. **Simplifying the Expression**: We can simplify the expression: \[ \frac{3 + h}{3} = 1 + \frac{h}{3} \] 7. **Taking the Limit**: As \( h \) approaches 0, the term \( \frac{h}{3} \) approaches 0. Therefore, we have: \[ \lim_{h \to 0^+} \left(1 + \frac{h}{3}\right) = 1 + 0 = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 3^+} \frac{x}{[x]} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL -1|134 Videos
  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise LEVEL 2|103 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) (sinx^(@))/(x) = _________

lim_(xto oo)(x/(1+x))^(x) is

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto0)|x|^(sinx)

Find the value of lim_(xto3^(-)) (x-2)/(x-3).

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

If lim_(xto3)(x^(3)+cx^(2)+5x+12)/(x^(2)-7x+12)=l (finite real number), ten

Given, lim_(xto0) (sin3x)/(sin7x) .

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE Advanced (Archive)
  1. If lim(xto3^(+))x/([x])is .

    Text Solution

    |

  2. Let g: R -> R be a differentiable function with g(0) = 0,,g'(1)!=0.Let...

    Text Solution

    |

  3. Let f(x)=sin((pi)/(6)sin((pi)/(2)sinx)) " for all "x in R and g(x)=(pi...

    Text Solution

    |

  4. Let f:R to R and h:R to R be differentiable functions such that f(x)=x...

    Text Solution

    |

  5. Let a , b in R and f:R to R be defined by f(x) =a cos (|x^(3)-x|)+...

    Text Solution

    |

  6. Let f:[-1/2,2] rarr R and g:[-1/2,2] rarr R be functions defined by f(...

    Text Solution

    |

  7. Let [x] be the greatest integer less than or equal to x . Then ,...

    Text Solution

    |

  8. Let f(x)=(1-x(1+|1-x|))/(|1-x|)cos((1)/(1-x))" for "x ne1. then

    Text Solution

    |

  9. Let f be two differentiable function satisfying f(1)=1,f(2)=4, f(3)=9,...

    Text Solution

    |

  10. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  11. The value of lim(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)...

    Text Solution

    |

  12. underset(xrarr(pi)/(4))(lim)(int(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/...

    Text Solution

    |

  13. (d^2x)/(dy^2) equals: ((d^2y)/(dx^2))^(-1) (b) -((d^2y)/(dx^2))^(-1)(...

    Text Solution

    |

  14. Let g(x) = log f(x), where f(x) is a twice differentiable positive fun...

    Text Solution

    |

  15. Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0...

    Text Solution

    |

  16. If underset(xto0)lim[1+xln(1+b^(2))]^(1//x)=2bsin^(2)theta,bgt0," and ...

    Text Solution

    |

  17. Let f(x) = {{:(x^(2)|"cos"(pi)/(x)|",",x ne 0","x in R),(0",",x = 0):}...

    Text Solution

    |

  18. If underset(xtooo)lim((x^(2)+x+1)/(x+1)-ax-b)=4, then

    Text Solution

    |

  19. Let alpha(a) and beta(a) be the roots of the equation ((1+a)^(1/3)-1)x...

    Text Solution

    |

  20. Check the differentiability if f(x) = min. {1, x^(2), x^(3)}.

    Text Solution

    |

  21. Let f(x) be a non-constant twice differentiable function defined on (-...

    Text Solution

    |