Home
Class 12
MATHS
If f(x)=|x-2| and g(x)=f(f(x)) then g'(x...

If `f(x)=|x-2|` and `g(x)=f(f(x))` then `g'(x)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( g(x) = f(f(x)) \) where \( f(x) = |x - 2| \). ### Step 1: Define the function \( f(x) \) The function \( f(x) = |x - 2| \) can be expressed as a piecewise function: \[ f(x) = \begin{cases} 2 - x & \text{if } x < 2 \\ x - 2 & \text{if } x \geq 2 \end{cases} \] ### Step 2: Determine \( g(x) = f(f(x)) \) Now we need to find \( g(x) = f(f(x)) \). We will evaluate \( f(f(x)) \) for both cases of \( f(x) \). #### Case 1: \( x < 2 \) For \( x < 2 \), we have: \[ f(x) = 2 - x \] Now we need to find \( f(f(x)) = f(2 - x) \): - If \( 2 - x < 2 \) (which is true for \( x < 2 \)): \[ f(2 - x) = 2 - (2 - x) = x \] Thus, for \( x < 2 \): \[ g(x) = f(f(x)) = x \] #### Case 2: \( x \geq 2 \) For \( x \geq 2 \), we have: \[ f(x) = x - 2 \] Now we need to find \( f(f(x)) = f(x - 2) \): - If \( x - 2 < 2 \) (which is true for \( 2 \leq x < 4 \)): \[ f(x - 2) = 2 - (x - 2) = 4 - x \] - If \( x - 2 \geq 2 \) (which is true for \( x \geq 4 \)): \[ f(x - 2) = (x - 2) - 2 = x - 4 \] Thus, for \( 2 \leq x < 4 \): \[ g(x) = f(f(x)) = 4 - x \] And for \( x \geq 4 \): \[ g(x) = f(f(x)) = x - 4 \] ### Step 3: Combine the results for \( g(x) \) We can summarize \( g(x) \) as follows: \[ g(x) = \begin{cases} x & \text{if } x < 2 \\ 4 - x & \text{if } 2 \leq x < 4 \\ x - 4 & \text{if } x \geq 4 \end{cases} \] ### Step 4: Find the derivative \( g'(x) \) Now we will find the derivative \( g'(x) \) for each case: - For \( x < 2 \): \[ g'(x) = \frac{d}{dx}(x) = 1 \] - For \( 2 \leq x < 4 \): \[ g'(x) = \frac{d}{dx}(4 - x) = -1 \] - For \( x \geq 4 \): \[ g'(x) = \frac{d}{dx}(x - 4) = 1 \] ### Final Result Thus, the derivative \( g'(x) \) can be summarized as: \[ g'(x) = \begin{cases} 1 & \text{if } x < 2 \\ -1 & \text{if } 2 \leq x < 4 \\ 1 & \text{if } x \geq 4 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x-2|" and "g(x)=f(f(x)), then for xgt20,g'(x) equals

If f(x)=|x-2|" and "g(x)=f(f(x)), then for 2ltxlt4,g'(x) equals

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x)=|x-2| a n d g(x)=f[f(x)],t h e n g^(prime)(x)= ______ for x>20

If f(x) =4x^2 and g(x) =f(sin x)+f(cos x), then g (23^(@)) is

If f(g(x))=4x^(2)-8x and f(x)=x^(2)-4, then g(x)=

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2)))^(2) and given that F(5) =5, then F(10) is

If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)), then at x=0,g(x) is

If f(x) = x log x and g(x) = 10^(x) , then g(f(2)) =

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE Advanced (Archive)
  1. Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))...

    Text Solution

    |

  2. ABC is an isosceles triangle inscribed in a circle of radius rdot If A...

    Text Solution

    |

  3. If f(x)=|x-2| and g(x)=f(f(x)) then g'(x)=

    Text Solution

    |

  4. If ex^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

    Text Solution

    |

  5. Fill in the blanks so that the resulting statement is correct. Let f(x...

    Text Solution

    |

  6. Let F(x)=f(x) g(x) h(x) for all real x, where f(x), g(x), and h(x) are...

    Text Solution

    |

  7. Evaluate lim(xto0)(int(0)^(x^(2))cost^(2)dt)/(x sin x)

    Text Solution

    |

  8. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  9. If y={(log)(cosx)sinx}{(log)(sinx)cosx}^(-1)+sin^(-1)((2x)/(1+x^2)),fi...

    Text Solution

    |

  10. Let alpha be a repeated root of a quadratic equation f(x)=0a n dA(x...

    Text Solution

    |

  11. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  12. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  13. Let g(x) be a polynomial of degree one and f(x) is defined by f(x)={g...

    Text Solution

    |

  14. Let f be a continuous, g be a discontinuous function. Prove that f + g...

    Text Solution

    |

  15. Let f(x) be continuous function satisfying the condition f(-x) = f...

    Text Solution

    |

  16. Let R be the set of real numbers and f : R to R be such that for all x...

    Text Solution

    |

  17. The points where the function f(x) = [x] + |1 - x|, -1 < x < 3 where [...

    Text Solution

    |

  18. The values of a and b so that the function f(x) = {{:(x + a sqrt(2) si...

    Text Solution

    |

  19. If x=s e ctheta-costhetaa n dy=sec^ntheta-cos^ntheta,p rov et h a t ...

    Text Solution

    |

  20. A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y...

    Text Solution

    |