Home
Class 12
MATHS
Let g(x) be a polynomial of degree one a...

Let `g(x)` be a polynomial of degree one and `f(x)` is defined by `f(x)={g(x)`, `xleq0` and `((1+x)/(2+x))^(1/x)`,`xgt0`} Find `g(x)` such that `f(x)` is continuous and `f'(1)=f(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the polynomial \( g(x) \) of degree one such that the function \( f(x) \) is continuous and satisfies the condition \( f'(1) = f(-1) \). ### Step 1: Define the polynomial \( g(x) \) Let \( g(x) = ax + b \), where \( a \) and \( b \) are constants. ### Step 2: Define the function \( f(x) \) The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} g(x) & \text{if } x \leq 0 \\ \left(\frac{1+x}{2+x}\right)^{\frac{1}{x}} & \text{if } x > 0 \end{cases} \] ### Step 3: Ensure continuity at \( x = 0 \) For \( f(x) \) to be continuous at \( x = 0 \), we need: \[ \lim_{x \to 0^-} f(x) = f(0) = \lim_{x \to 0^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to 0^-} f(x) = g(0) = b \] Calculating the right-hand limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0} \left(\frac{1+x}{2+x}\right)^{\frac{1}{x}} = \left(\frac{1}{2}\right)^{\infty} = 0 \] Thus, we have: \[ b = 0 \] ### Step 4: Update \( g(x) \) Now, we can update \( g(x) \): \[ g(x) = ax + 0 = ax \] ### Step 5: Find \( f(-1) \) Now, we calculate \( f(-1) \): \[ f(-1) = g(-1) = a(-1) = -a \] ### Step 6: Find \( f'(1) \) For \( x > 0 \), we need to differentiate \( f(x) \): \[ f(x) = \left(\frac{1+x}{2+x}\right)^{\frac{1}{x}} \] Taking the natural logarithm: \[ \ln(f(x)) = \frac{1}{x} \ln\left(\frac{1+x}{2+x}\right) \] Differentiating both sides using the product rule: \[ \frac{f'(x)}{f(x)} = -\frac{1}{x^2} \ln\left(\frac{1+x}{2+x}\right) + \frac{1}{x} \cdot \frac{1}{\frac{1+x}{2+x}} \cdot \left(\frac{(2+x) - (1+x)}{(2+x)^2}\right) \] Evaluating at \( x = 1 \): \[ f'(1) = f(1) \cdot \left(-\frac{1}{1^2} \ln\left(\frac{2}{3}\right) + \frac{1}{1} \cdot \frac{1}{\frac{2}{3}} \cdot \frac{1}{(2)^2}\right) \] Calculating \( f(1) \): \[ f(1) = \left(\frac{2}{3}\right)^{1} = \frac{2}{3} \] Thus, we have: \[ f'(1) = \frac{2}{3} \left(-\ln\left(\frac{2}{3}\right) + \frac{3}{2}\cdot\frac{1}{4}\right) \] ### Step 7: Set up the equation \( f'(1) = f(-1) \) We need to set: \[ f'(1) = -a \] This gives us the equation: \[ \frac{2}{3} \left(-\ln\left(\frac{2}{3}\right) + \frac{3}{8}\right) = -a \] Thus: \[ a = -\frac{2}{3} \left(-\ln\left(\frac{2}{3}\right) + \frac{3}{8}\right) \] ### Step 8: Final expression for \( g(x) \) Substituting \( a \) back into \( g(x) \): \[ g(x) = -\frac{2}{3} \left(-\ln\left(\frac{2}{3}\right) + \frac{3}{8}\right)x \] ### Conclusion The polynomial \( g(x) \) that makes \( f(x) \) continuous and satisfies \( f'(1) = f(-1) \) is: \[ g(x) = -\frac{2}{3} \left(-\ln\left(\frac{2}{3}\right) + \frac{3}{8}\right)x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let g(x) be a polynomial of degree one and f(x) be defined by f(x)=-g(x), x 0 If f(x) is continuous satisfying f'(1)=f(-1) , then g(x) is

Let f(x+y)=f(x) f(y) and f(x)=1+(sin 2x)g(x) where g(x) is continuous. Then, f'(x) equals

Consider two functions, f(x) and g(x) defined as under: f(x)={1+x^3,x < 0 and g(x) ={(x-1)^(1/3) (x+1)^(1/2), x < 0. Evaluate g(f(x)).

If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x then g^(-1)(f^(-1)(5))

Let f(x) be a continuous function for all x in R and f'(0) =1 then g(x) = f(|x|)-sqrt((1-cos 2x)/(2)), at x=0,

Given that f(x) = xg (x)//|x| g(0) = g'(0)=0 and f(x) is continuous at x=0 then the value of f'(0)

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .

Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^(3)) .Find g'(x) in terms of g(x).

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x) g(x) and h(x) are three polynomials of degree 2 and Delta = |( f(x), g(x), h(x)), (f'(x), g'(x), h'(x)), (f''(x), g''(x), h''(x))| then Delta(x) is a polynomial of degree (dashes denote the differentiation).

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE Advanced (Archive)
  1. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  2. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  3. Let g(x) be a polynomial of degree one and f(x) is defined by f(x)={g...

    Text Solution

    |

  4. Let f be a continuous, g be a discontinuous function. Prove that f + g...

    Text Solution

    |

  5. Let f(x) be continuous function satisfying the condition f(-x) = f...

    Text Solution

    |

  6. Let R be the set of real numbers and f : R to R be such that for all x...

    Text Solution

    |

  7. The points where the function f(x) = [x] + |1 - x|, -1 < x < 3 where [...

    Text Solution

    |

  8. The values of a and b so that the function f(x) = {{:(x + a sqrt(2) si...

    Text Solution

    |

  9. If x=s e ctheta-costhetaa n dy=sec^ntheta-cos^ntheta,p rov et h a t ...

    Text Solution

    |

  10. A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y...

    Text Solution

    |

  11. Given that f(x)= {((1-cos4x)/(x^(2))",","if "x lt 0),(a",","if "x =0),...

    Text Solution

    |

  12. Find (dy)/(dx) at x=-1, when (siny)^(sin.(pix)/(2))+(sqrt3)/(2)sec^(-1...

    Text Solution

    |

  13. Find ("lim")(xvec0){tan(pi/4+x)}^(1//x)

    Text Solution

    |

  14. Let f(x) = {{:({1 + |sin x|}^(a//|sin x|)",",-pi//6 lt x lt 0),(b",",x...

    Text Solution

    |

  15. Let f((x+y)/(2))= (f(x)+f(y))/(2) for all real x and y. If f'(0) exits...

    Text Solution

    |

  16. If f(x)={xe^-[1/(|x|)+1/x]; x != 0; 0;x=0 Prove that f(x) is not diff...

    Text Solution

    |

  17. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  18. "If "=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1," prove...

    Text Solution

    |

  19. Let alpha in R. Prove that a function f: RtoR is differentiable a...

    Text Solution

    |

  20. Q. f={(x+a if x<0), (|x-1| if x>=0) g(x)={(x+1 if x<0),(x-1)^2 + b ...

    Text Solution

    |