Home
Class 12
MATHS
f(x)={bsin^-1((x+c)/2),-1/2 lt xlt0 and ...

`f(x)={bsin^-1((x+c)/2),-1/2 lt xlt0 and 1/2 , x=0 and e^(((ax)/2)-1)/x , o lt x lt 1/2` If `f(x)` is differentiable at `x=0 and |c|<1/2`, then find thevalue of a and prove that `64b^2=(4-c^2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous and differentiable at \( x = 0 \). The function is defined piecewise, and we will analyze the limits from both sides of \( x = 0 \). ### Step 1: Check Continuity at \( x = 0 \) The function is given as: \[ f(x) = \begin{cases} b \sin^{-1}\left(\frac{x+c}{2}\right) & \text{for } -\frac{1}{2} < x < 0 \\ \frac{e^{\frac{ax}{2}} - 1}{x} & \text{for } 0 < x < \frac{1}{2} \\ \end{cases} \] We need to check that: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) \] ### Step 2: Calculate \( f(0) \) From the definition, we can assume: \[ f(0) = \frac{1}{2} \] ### Step 3: Calculate the Left-Hand Limit For \( x \to 0^- \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} b \sin^{-1}\left(\frac{x+c}{2}\right) \] As \( x \to 0 \): \[ \sin^{-1}\left(\frac{0+c}{2}\right) = \sin^{-1}\left(\frac{c}{2}\right) \] Thus, \[ \lim_{x \to 0^-} f(x) = b \sin^{-1}\left(\frac{c}{2}\right) \] ### Step 4: Calculate the Right-Hand Limit For \( x \to 0^+ \): \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{\frac{ax}{2}} - 1}{x} \] Using the limit property: \[ \lim_{x \to 0} \frac{e^{\frac{ax}{2}} - 1}{x} = \frac{a}{2} \] Thus, \[ \lim_{x \to 0^+} f(x) = \frac{a}{2} \] ### Step 5: Set the Limits Equal for Continuity Setting the left-hand limit equal to the right-hand limit: \[ b \sin^{-1}\left(\frac{c}{2}\right) = \frac{a}{2} = \frac{1}{2} \] From this, we can deduce: \[ b \sin^{-1}\left(\frac{c}{2}\right) = \frac{1}{2} \] This gives: \[ b = \frac{1}{2 \sin^{-1}\left(\frac{c}{2}\right)} \] ### Step 6: Differentiate and Set Derivatives Equal To ensure differentiability, we need to find the derivatives from both sides. **Right-Hand Derivative:** \[ f'(0^+) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^+} \frac{\frac{e^{\frac{ax}{2}} - 1}{x} - \frac{1}{2}}{x} \] Using L'Hôpital's Rule: \[ f'(0^+) = \frac{a}{4} \] **Left-Hand Derivative:** \[ f'(0^-) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^-} \frac{b \sin^{-1}\left(\frac{x+c}{2}\right) - \frac{1}{2}}{x} \] Using L'Hôpital's Rule: \[ f'(0^-) = b \cdot \frac{1}{\sqrt{1 - \left(\frac{c}{2}\right)^2}} \cdot \frac{1}{2} \] Setting the derivatives equal: \[ \frac{a}{4} = b \cdot \frac{1}{\sqrt{1 - \left(\frac{c}{2}\right)^2}} \cdot \frac{1}{2} \] ### Step 7: Substitute \( a = 1 \) From earlier, we found \( a = 1 \): \[ \frac{1}{4} = b \cdot \frac{1}{\sqrt{1 - \left(\frac{c}{2}\right)^2}} \cdot \frac{1}{2} \] This leads to: \[ b = \frac{1}{2} \sqrt{1 - \left(\frac{c}{2}\right)^2} \] ### Step 8: Prove \( 64b^2 = 4 - c^2 \) Substituting \( b \): \[ 64b^2 = 64 \left(\frac{1}{2} \sqrt{1 - \left(\frac{c}{2}\right)^2}\right)^2 = 16(1 - \frac{c^2}{4}) = 16 - 4c^2 \] Thus: \[ 64b^2 = 4 - c^2 \] ### Final Result We have found \( a = 1 \) and proved that \( 64b^2 = 4 - c^2 \).
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt x lt 1, x ne 0),(x|x|, x gt 1 or x le -1):} . Then ,

If f(x)={{:(,ax^(2)-b,|x|lt 1),(,(1)/(|x|),|x| ge1):} is differentiable at x=1, then

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

Show that the function f(x)={:{(x^2+2", " xge1),(2x+1", " x lt 1 ):} is always differentiable at x=1

The value of k + f(0) so that f (x)={{:((sin (4k-1)x)/(3x)"," , x lt 0),((tan (4k +1)x )/(5x)"," , 0 lt x lt (pi)/(2)), ( 1"," , x =0):} can bemade continous at x=0 is:

If f(x) = { x, 0 lt x lt 1/2, 1/2, x = 1/2, 1-x , 1/2 lt x lt 1} and g(x) = (x-1/2)^2 then find the area bounded by f(x) and g(x) from x = 1/2 to x= sqrt3/2

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

If 0 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln (ax ^(2)+ bx +c))/(x ^(2)),,, -1 le x lt 0),(1 ,,, x =0),((sin (e ^(x ^(2))-1))/(x ^(2)),,, 0 lt x le 1):} Then which of the following is/are corrent

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then A. f(x) is continuous for all x in [0, 2) B. f(x) is differentiable for all x in [0, 2) - {1} C. f(X) is differentiable for all x in [0, 2)-{(1)/(2),1} D. None of these

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE Advanced (Archive)
  1. Let g(x) be a polynomial of degree one and f(x) is defined by f(x)={g...

    Text Solution

    |

  2. Let f be a continuous, g be a discontinuous function. Prove that f + g...

    Text Solution

    |

  3. Let f(x) be continuous function satisfying the condition f(-x) = f...

    Text Solution

    |

  4. Let R be the set of real numbers and f : R to R be such that for all x...

    Text Solution

    |

  5. The points where the function f(x) = [x] + |1 - x|, -1 < x < 3 where [...

    Text Solution

    |

  6. The values of a and b so that the function f(x) = {{:(x + a sqrt(2) si...

    Text Solution

    |

  7. If x=s e ctheta-costhetaa n dy=sec^ntheta-cos^ntheta,p rov et h a t ...

    Text Solution

    |

  8. A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y...

    Text Solution

    |

  9. Given that f(x)= {((1-cos4x)/(x^(2))",","if "x lt 0),(a",","if "x =0),...

    Text Solution

    |

  10. Find (dy)/(dx) at x=-1, when (siny)^(sin.(pix)/(2))+(sqrt3)/(2)sec^(-1...

    Text Solution

    |

  11. Find ("lim")(xvec0){tan(pi/4+x)}^(1//x)

    Text Solution

    |

  12. Let f(x) = {{:({1 + |sin x|}^(a//|sin x|)",",-pi//6 lt x lt 0),(b",",x...

    Text Solution

    |

  13. Let f((x+y)/(2))= (f(x)+f(y))/(2) for all real x and y. If f'(0) exits...

    Text Solution

    |

  14. If f(x)={xe^-[1/(|x|)+1/x]; x != 0; 0;x=0 Prove that f(x) is not diff...

    Text Solution

    |

  15. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  16. "If "=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1," prove...

    Text Solution

    |

  17. Let alpha in R. Prove that a function f: RtoR is differentiable a...

    Text Solution

    |

  18. Q. f={(x+a if x<0), (|x-1| if x>=0) g(x)={(x+1 if x<0),(x-1)^2 + b ...

    Text Solution

    |

  19. f(x)={bsin^-1((x+c)/2),-1/2 lt xlt0 and 1/2 , x=0 and e^(((ax)/2)-1)/...

    Text Solution

    |

  20. If |cos^-1(1)/(n)|lt (pi)/(2), then lim(n to oo) {(n+1)(2)/(pi)cos^-...

    Text Solution

    |