Home
Class 12
MATHS
If |cos^-1(1)/(n)|lt (pi)/(2), then li...

If `|cos^-1(1)/(n)|lt (pi)/(2)`, then
`lim_(n to oo) {(n+1)(2)/(pi)cos^-1.(1)/(n)-n}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by the expression: \[ \lim_{n \to \infty} \left( (n + 1) \frac{2}{\pi} \cos^{-1} \left( \frac{1}{n} \right) - n \right) \] we will follow these steps: ### Step 1: Rewrite the limit expression We can factor out \(\frac{2}{\pi}\) from the limit: \[ \lim_{n \to \infty} \left( (n + 1) \frac{2}{\pi} \cos^{-1} \left( \frac{1}{n} \right) - n \right) = \lim_{n \to \infty} \frac{2}{\pi} \left( (n + 1) \cos^{-1} \left( \frac{1}{n} \right) - \frac{\pi n}{2} \right) \] ### Step 2: Simplify the expression inside the limit Now, we can expand the expression: \[ (n + 1) \cos^{-1} \left( \frac{1}{n} \right) = n \cos^{-1} \left( \frac{1}{n} \right) + \cos^{-1} \left( \frac{1}{n} \right) \] Thus, the limit becomes: \[ \lim_{n \to \infty} \frac{2}{\pi} \left( n \cos^{-1} \left( \frac{1}{n} \right) + \cos^{-1} \left( \frac{1}{n} \right) - \frac{\pi n}{2} \right) \] ### Step 3: Use the identity for \(\cos^{-1}\) We know that: \[ \cos^{-1} \left( \frac{1}{n} \right) = \frac{\pi}{2} - \sin^{-1} \left( \frac{1}{n} \right) \] Substituting this into our limit gives: \[ \lim_{n \to \infty} \frac{2}{\pi} \left( n \left( \frac{\pi}{2} - \sin^{-1} \left( \frac{1}{n} \right) \right) + \left( \frac{\pi}{2} - \sin^{-1} \left( \frac{1}{n} \right) \right) - \frac{\pi n}{2} \right) \] ### Step 4: Simplify further This simplifies to: \[ \lim_{n \to \infty} \frac{2}{\pi} \left( n \frac{\pi}{2} - n \sin^{-1} \left( \frac{1}{n} \right) + \frac{\pi}{2} - \sin^{-1} \left( \frac{1}{n} \right) - \frac{\pi n}{2} \right) \] The \(n \frac{\pi}{2}\) and \(-\frac{\pi n}{2}\) cancel out, leading to: \[ \lim_{n \to \infty} \frac{2}{\pi} \left( -n \sin^{-1} \left( \frac{1}{n} \right) + \frac{\pi}{2} - \sin^{-1} \left( \frac{1}{n} \right) \right) \] ### Step 5: Evaluate the limit As \(n \to \infty\), \(\sin^{-1} \left( \frac{1}{n} \right) \approx \frac{1}{n}\). Thus, \[ -n \sin^{-1} \left( \frac{1}{n} \right) \approx -n \cdot \frac{1}{n} = -1 \] So we have: \[ \lim_{n \to \infty} \frac{2}{\pi} \left( -1 + \frac{\pi}{2} - 0 \right) = \frac{2}{\pi} \left( \frac{\pi}{2} - 1 \right) = 1 - \frac{2}{\pi} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{n \to \infty} \left( (n + 1) \frac{2}{\pi} \cos^{-1} \left( \frac{1}{n} \right) - n \right) = 1 - \frac{2}{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS

    VMC MODULES ENGLISH|Exercise JEE main (Archive)|51 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(n rarr oo)2^(1/n)

Given that lim_(n to oo)sum_(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2+(pi)/(2)-2 , then lim_(n to oo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+r^(2))^(m)......(n^(2))^(m)]^(1//n) is equal to

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(n->oo)2^(n-1)sin(a/2^n)

Let f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) then lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6)) equals.

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

lim_(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

Evaluate lim_(nto oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

f'(0) = lim_(n->oo) nf(1/n) and f(0)=0 Using this, find lim_(n->oo)((n+1)(2/pi)cos^(- 1)(1/n)-n)),|cos^(-1)1/n|

VMC MODULES ENGLISH-DIFFERENTIAL CALCULUS-JEE Advanced (Archive)
  1. Let g(x) be a polynomial of degree one and f(x) is defined by f(x)={g...

    Text Solution

    |

  2. Let f be a continuous, g be a discontinuous function. Prove that f + g...

    Text Solution

    |

  3. Let f(x) be continuous function satisfying the condition f(-x) = f...

    Text Solution

    |

  4. Let R be the set of real numbers and f : R to R be such that for all x...

    Text Solution

    |

  5. The points where the function f(x) = [x] + |1 - x|, -1 < x < 3 where [...

    Text Solution

    |

  6. The values of a and b so that the function f(x) = {{:(x + a sqrt(2) si...

    Text Solution

    |

  7. If x=s e ctheta-costhetaa n dy=sec^ntheta-cos^ntheta,p rov et h a t ...

    Text Solution

    |

  8. A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y...

    Text Solution

    |

  9. Given that f(x)= {((1-cos4x)/(x^(2))",","if "x lt 0),(a",","if "x =0),...

    Text Solution

    |

  10. Find (dy)/(dx) at x=-1, when (siny)^(sin.(pix)/(2))+(sqrt3)/(2)sec^(-1...

    Text Solution

    |

  11. Find ("lim")(xvec0){tan(pi/4+x)}^(1//x)

    Text Solution

    |

  12. Let f(x) = {{:({1 + |sin x|}^(a//|sin x|)",",-pi//6 lt x lt 0),(b",",x...

    Text Solution

    |

  13. Let f((x+y)/(2))= (f(x)+f(y))/(2) for all real x and y. If f'(0) exits...

    Text Solution

    |

  14. If f(x)={xe^-[1/(|x|)+1/x]; x != 0; 0;x=0 Prove that f(x) is not diff...

    Text Solution

    |

  15. Determine the values of x for which the following functions fails to b...

    Text Solution

    |

  16. "If "=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1," prove...

    Text Solution

    |

  17. Let alpha in R. Prove that a function f: RtoR is differentiable a...

    Text Solution

    |

  18. Q. f={(x+a if x<0), (|x-1| if x>=0) g(x)={(x+1 if x<0),(x-1)^2 + b ...

    Text Solution

    |

  19. f(x)={bsin^-1((x+c)/2),-1/2 lt xlt0 and 1/2 , x=0 and e^(((ax)/2)-1)/...

    Text Solution

    |

  20. If |cos^-1(1)/(n)|lt (pi)/(2), then lim(n to oo) {(n+1)(2)/(pi)cos^-...

    Text Solution

    |