Home
Class 12
MATHS
For any vector veca |veca xx hati|^(...

For any vector ` veca`
` |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) ` is equal to

A

`a^(-2)`

B

`3a^(-2)`

C

`4a^(-2)`

D

`2a^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \] where \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\). ### Step 1: Define the vector \(\vec{a}\) Let: \[ \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \] ### Step 2: Calculate \(\vec{a} \times \hat{i}\) Using the determinant form for the cross product: \[ \vec{a} \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ 1 & 0 & 0 \end{vmatrix} \] Calculating this determinant: \[ \vec{a} \times \hat{i} = (a_2 \cdot 0 - a_3 \cdot 0) \hat{i} - (a_1 \cdot 0 - a_3 \cdot 1) \hat{j} + (a_1 \cdot 0 - a_2 \cdot 1) \hat{k} \] \[ = -a_3 \hat{j} + a_2 \hat{k} \] Thus, \[ \vec{a} \times \hat{i} = -a_3 \hat{j} + a_2 \hat{k} \] ### Step 3: Calculate \(|\vec{a} \times \hat{i}|^2\) Now, we find the magnitude squared: \[ |\vec{a} \times \hat{i}|^2 = |-a_3 \hat{j} + a_2 \hat{k}|^2 = (-a_3)^2 + (a_2)^2 = a_3^2 + a_2^2 \] ### Step 4: Calculate \(\vec{a} \times \hat{j}\) Now, calculate \(\vec{a} \times \hat{j}\): \[ \vec{a} \times \hat{j} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ 0 & 1 & 0 \end{vmatrix} \] Calculating this determinant: \[ \vec{a} \times \hat{j} = (a_3 \cdot 0 - a_2 \cdot 0) \hat{i} - (a_1 \cdot 0 - a_3 \cdot 1) \hat{j} + (a_1 \cdot 1 - a_2 \cdot 0) \hat{k} \] \[ = a_3 \hat{i} - a_1 \hat{k} \] ### Step 5: Calculate \(|\vec{a} \times \hat{j}|^2\) Now, we find the magnitude squared: \[ |\vec{a} \times \hat{j}|^2 = |a_3 \hat{i} - a_1 \hat{k}|^2 = (a_3)^2 + (-a_1)^2 = a_3^2 + a_1^2 \] ### Step 6: Calculate \(\vec{a} \times \hat{k}\) Now, calculate \(\vec{a} \times \hat{k}\): \[ \vec{a} \times \hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ 0 & 0 & 1 \end{vmatrix} \] Calculating this determinant: \[ \vec{a} \times \hat{k} = (a_2 \cdot 1 - a_3 \cdot 0) \hat{i} - (a_1 \cdot 1 - a_3 \cdot 0) \hat{j} + (a_1 \cdot 0 - a_2 \cdot 0) \hat{k} \] \[ = a_2 \hat{i} - a_1 \hat{j} \] ### Step 7: Calculate \(|\vec{a} \times \hat{k}|^2\) Now, we find the magnitude squared: \[ |\vec{a} \times \hat{k}|^2 = |a_2 \hat{i} - a_1 \hat{j}|^2 = (a_2)^2 + (-a_1)^2 = a_2^2 + a_1^2 \] ### Step 8: Combine all results Now, combine all the results: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = (a_2^2 + a_3^2) + (a_3^2 + a_1^2) + (a_2^2 + a_1^2) \] \[ = 2a_1^2 + 2a_2^2 + 2a_3^2 \] ### Step 9: Factor out the common term Factoring out the common term: \[ = 2(a_1^2 + a_2^2 + a_3^2) \] ### Step 10: Relate to the modulus of \(\vec{a}\) Since the modulus of \(\vec{a}\) is given by: \[ |\vec{a}|^2 = a_1^2 + a_2^2 + a_3^2 \] Thus, we can write: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2 \] ### Final Answer The final answer is: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(veca xx vec k)^2 is equal to

If veca=2hati + hatj + hatk , vecb=hati + 2hatj + 2hatk then [veca vecb veci] hati + [veca vecb vecj] hatj + [veca vecb hatk] k is equal to

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

Resolved part of vector veca and along vector vecb " is " veca1 and that prependicular to vecb " is " veca2 then veca1 xx veca2 is equl to

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to

VMC MODULES ENGLISH-VECTORS -JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)
  1. For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |vec...

    Text Solution

    |

  2. Sate true/false. The points with position vectors veca + vecb, veca-ve...

    Text Solution

    |

  3. Let vecA, vecB and vecC be unit vectors such that vecA.vecB = vecA.vec...

    Text Solution

    |

  4. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  5. If vecX.vecA=0, vecX.vecB=0,vecX.vecC=0 for some non-zero vector, vecX...

    Text Solution

    |

  6. find three- dimensional vectors, vecv1, vecv2 and vecv3" satisfying "...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. In a triangle A B C ,Da n dE are points on B Ca n dA C , respectivley,...

    Text Solution

    |

  9. Determine the value of c so that for all real x , vectors c x hat i-6 ...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Let OACB be a parallelogram with O at the origin and OC a diagonal. Le...

    Text Solution

    |

  12. Let vec A(t) = f1(t) hat i + f2(t) hat j and vec B(t) = g(t)hat i+g2(...

    Text Solution

    |

  13. If veca, vecb, vecc and vecd ar distinct vectors such that veca xx v...

    Text Solution

    |

  14. For any two vectors vecu and vecv prove that (1+|vecu|^2)(1+|vecv|^2) ...

    Text Solution

    |

  15. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, be...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. Let vecu and vecv be unit vectors. If vecw is a vector such that vecw+...

    Text Solution

    |

  20. The position vectors of the point A, B, C and D are 3hati-2hatj -hatk,...

    Text Solution

    |

  21. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |