Home
Class 12
MATHS
The vectors lambdahati + hatj + 2hatk, h...

The vectors `lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk` are coplanar, if:

A

`lambda =2`

B

`lambda=0`

C

`lambda=1`

D

`lambda =-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for which the vectors \( \mathbf{a} = \lambda \hat{i} + \hat{j} + 2\hat{k} \), \( \mathbf{b} = \hat{i} + \lambda \hat{j} + \hat{k} \), and \( \mathbf{c} = 2\hat{i} - \hat{j} + 2\hat{k} \) are coplanar, we will use the condition that the scalar triple product of the vectors must be zero. ### Step-by-step Solution: 1. **Write the Vectors**: \[ \mathbf{a} = \lambda \hat{i} + \hat{j} + 2\hat{k} \] \[ \mathbf{b} = \hat{i} + \lambda \hat{j} + \hat{k} \] \[ \mathbf{c} = 2\hat{i} - \hat{j} + 2\hat{k} \] 2. **Set Up the Scalar Triple Product**: The scalar triple product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \) must equal zero for the vectors to be coplanar. This can be calculated using the determinant of a matrix formed by the components of the vectors: \[ \begin{vmatrix} \lambda & 1 & 2 \\ 1 & \lambda & 1 \\ 2 & -1 & 2 \end{vmatrix} = 0 \] 3. **Calculate the Determinant**: We will calculate the determinant using the formula for a 3x3 matrix: \[ D = \lambda \begin{vmatrix} \lambda & 1 \\ -1 & 2 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} + 2 \begin{vmatrix} 1 & \lambda \\ 2 & -1 \end{vmatrix} \] - Calculate the first determinant: \[ \begin{vmatrix} \lambda & 1 \\ -1 & 2 \end{vmatrix} = \lambda \cdot 2 - 1 \cdot (-1) = 2\lambda + 1 \] - Calculate the second determinant: \[ \begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix} = 1 \cdot 2 - 1 \cdot 2 = 0 \] - Calculate the third determinant: \[ \begin{vmatrix} 1 & \lambda \\ 2 & -1 \end{vmatrix} = 1 \cdot (-1) - \lambda \cdot 2 = -1 - 2\lambda \] Putting it all together: \[ D = \lambda(2\lambda + 1) - 1(0) + 2(-1 - 2\lambda) \] \[ D = \lambda(2\lambda + 1) - 2 - 4\lambda \] \[ D = 2\lambda^2 + \lambda - 2 - 4\lambda \] \[ D = 2\lambda^2 - 3\lambda - 2 \] 4. **Set the Determinant to Zero**: \[ 2\lambda^2 - 3\lambda - 2 = 0 \] 5. **Solve the Quadratic Equation**: We can use the quadratic formula \( \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = -3, c = -2 \): \[ \lambda = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} \] \[ \lambda = \frac{3 \pm \sqrt{9 + 16}}{4} \] \[ \lambda = \frac{3 \pm 5}{4} \] This gives us two solutions: \[ \lambda = \frac{8}{4} = 2 \quad \text{and} \quad \lambda = \frac{-2}{4} = -\frac{1}{2} \] ### Final Answer: The vectors are coplanar if \( \lambda = 2 \) or \( \lambda = -\frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

The sum of the distinct real values of mu , for which the vectors, mu hati + hatj + hatk, hati + mu hatj + hatk, hati + hatj + muhatk are coplanar, is

The vectors lamdahati+hatj+2hatk,hati+lamdahatj-hatkand2hati-hatj+lamdahatk are coplanar, if

The number of distinct values of lamda , for which the vectors -lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk and hati+hatj-lamda^(2)hatk are coplanar, is

The number of distinct real values of lamda , for which the vectors -lamda^(2)hati+hatj+hatk, hati-lamda^(2)hatj+hatk and hati+hatj-lamda^(2)hatk are coplanar, is

The vectors 3hati - hatj +2hatk, 2hati+hatj+3hatk and hati+lambdahatj-hatk are coplanar if value of lambda is (A) -2 (B) 0 (C) 2 (D) any real number

Find lambda if the vectors hati\ -\ hatj\ +\ hatk,\ 3 hati+\ hatj\ +\ 2 hatk\ and\ hati+lambda hatj+ hat3k\ are coplanar

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

Find the value of lambda for which the four points with position vectors 6hati-7hatj, 16hati-19hatj, lambdahatj-6hatk and 2hati-5hatj+10hatk are coplanar.

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If the four points with position vectors -2hati+hatj+hatk, hati+hatj+hatk, hatj-hatk and lamda hatj+hatk are coplanar then lamda= (A) 1 (B) 2/3 (C) -1 (D) 0

VMC MODULES ENGLISH-VECTORS -JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)
  1. The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati ...

    Text Solution

    |

  2. Sate true/false. The points with position vectors veca + vecb, veca-ve...

    Text Solution

    |

  3. Let vecA, vecB and vecC be unit vectors such that vecA.vecB = vecA.vec...

    Text Solution

    |

  4. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  5. If vecX.vecA=0, vecX.vecB=0,vecX.vecC=0 for some non-zero vector, vecX...

    Text Solution

    |

  6. find three- dimensional vectors, vecv1, vecv2 and vecv3" satisfying "...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. In a triangle A B C ,Da n dE are points on B Ca n dA C , respectivley,...

    Text Solution

    |

  9. Determine the value of c so that for all real x , vectors c x hat i-6 ...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Let OACB be a parallelogram with O at the origin and OC a diagonal. Le...

    Text Solution

    |

  12. Let vec A(t) = f1(t) hat i + f2(t) hat j and vec B(t) = g(t)hat i+g2(...

    Text Solution

    |

  13. If veca, vecb, vecc and vecd ar distinct vectors such that veca xx v...

    Text Solution

    |

  14. For any two vectors vecu and vecv prove that (1+|vecu|^2)(1+|vecv|^2) ...

    Text Solution

    |

  15. A , B , Ca n dD are any four points in the space, then prove that |...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, be...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. Let vecu and vecv be unit vectors. If vecw is a vector such that vecw+...

    Text Solution

    |

  20. The position vectors of the point A, B, C and D are 3hati-2hatj -hatk,...

    Text Solution

    |

  21. If vecA , vecB and vecC are vectors such that |vecB| = |vecC| prove th...

    Text Solution

    |