Home
Class 12
MATHS
If I is the centre of a circle inscribed...

If `I` is the centre of a circle inscribed in a triangle `ABC`, then `|vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC)` is

A

`vec0`

B

`vec(IA) + vec(IB) + vec(Ic)`

C

`(vec(IA) + vec(IB) + vec(IC))/3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given in the question: \[ |\vec{BC}| \vec{IA} + |\vec{CA}| \vec{IB} + |\vec{AB}| \vec{IC} \] ### Step 1: Understand the Incenter The incenter \( I \) of triangle \( ABC \) is the point where the angle bisectors of the triangle intersect. It is also the center of the circle inscribed in the triangle. The position vector of the incenter can be expressed in terms of the vertices of the triangle and the lengths of the sides. ### Step 2: Express the Position Vectors The position vector of the incenter \( I \) can be represented as: \[ \vec{I} = \frac{a \vec{A} + b \vec{B} + c \vec{C}}{a + b + c} \] where \( a = |\vec{BC}| \), \( b = |\vec{CA}| \), and \( c = |\vec{AB}| \). ### Step 3: Write the Vectors from Incenter to Vertices The vectors from the incenter \( I \) to the vertices \( A \), \( B \), and \( C \) can be expressed as: \[ \vec{IA} = \vec{A} - \vec{I} \] \[ \vec{IB} = \vec{B} - \vec{I} \] \[ \vec{IC} = \vec{C} - \vec{I} \] ### Step 4: Substitute the Expressions Now, we can substitute these expressions into our original equation: \[ |\vec{BC}| (\vec{A} - \vec{I}) + |\vec{CA}| (\vec{B} - \vec{I}) + |\vec{AB}| (\vec{C} - \vec{I}) \] ### Step 5: Expand the Expression Expanding the expression gives: \[ |\vec{BC}| \vec{A} - |\vec{BC}| \vec{I} + |\vec{CA}| \vec{B} - |\vec{CA}| \vec{I} + |\vec{AB}| \vec{C} - |\vec{AB}| \vec{I} \] ### Step 6: Combine Like Terms Combining the terms yields: \[ (|\vec{BC}| \vec{A} + |\vec{CA}| \vec{B} + |\vec{AB}| \vec{C}) - (|\vec{BC}| + |\vec{CA}| + |\vec{AB}|) \vec{I} \] ### Step 7: Recognize the Incenter Since the incenter \( I \) is a weighted average of the vertices \( A \), \( B \), and \( C \), the first term is equal to \( (|\vec{BC}| + |\vec{CA}| + |\vec{AB}|) \vec{I} \). ### Step 8: Set the Equation to Zero Thus, we have: \[ (|\vec{BC}| + |\vec{CA}| + |\vec{AB}|) \vec{I} - (|\vec{BC}| + |\vec{CA}| + |\vec{AB}|) \vec{I} = 0 \] This simplifies to: \[ 0 = 0 \] ### Conclusion Therefore, the expression \[ |\vec{BC}| \vec{IA} + |\vec{CA}| \vec{IB} + |\vec{AB}| \vec{IC} = 0 \] is proved.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Assertion: If I is the incentre of /_\ABC, then |vec(BC)| vec(IA) +|vec(CA)| vec(IB) +|vec(AB)| vec(IC) =0 Reason: If O is the origin, then the position vector of centroid of /_\ABC is (vec(OA)+vec(OB)+vec(OC))/3

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If in a right-angled triangle A B C , the hypotenuse A B=p ,then vec(AB).vec(AC)+ vec(BC). vec(BA)+ vec(CA).vec(CB) is equal to 2p^2 b. (p^2)/2 c. p^2 d. none of these

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: vec(OA) +vec(OB)+vec(OC)=vec(OO')

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

VMC MODULES ENGLISH-VECTORS -LEVEL -2
  1. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(1)hati+b(2)hatj+b(3)hatk an...

    Text Solution

    |

  2. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  3. If I is the centre of a circle inscribed in a triangle ABC, then |vec...

    Text Solution

    |

  4. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  5. Let veca, vecb,vecc be unit vectors, equally inclined to each other at...

    Text Solution

    |

  6. Let veca,vecb,vecc be three non coplanar and vecdbe a vector which is ...

    Text Solution

    |

  7. If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2...

    Text Solution

    |

  8. Let veca, vecb and vecc be three non- coplanar vectors and vecr be any...

    Text Solution

    |

  9. If vecu and vecv be unit vectors. If vecw is a vector such that vecw+(...

    Text Solution

    |

  10. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  11. If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr...

    Text Solution

    |

  12. Given a cube ABCD A(1)B(1)C(1)D(1) which lower base ABCD, upper base A...

    Text Solution

    |

  13. Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, ...

    Text Solution

    |

  14. If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vec...

    Text Solution

    |

  15. I' is the incentre of DeltaABC whose corresponding sides are a,b,c res...

    Text Solution

    |

  16. Consider a tetrahedron with faces F(1),F(2),F(3),F(4). Let vec(V(1)), ...

    Text Solution

    |

  17. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  18. In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar...

    Text Solution

    |

  19. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  20. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |