Home
Class 12
MATHS
Let veca, vecb,vecc be unit vectors, equ...

Let `veca, vecb,vecc` be unit vectors, equally inclined to each other at an angle `theta, (pi/3 lt theta lt pi/2)`. If these are the poisitions vector of the vertices of a trinalge and `vecg` is the position vector of the centroid of the triangle, then:

A

`|vecg| gt 1`

B

`|vecg| le sqrt(3/2)`

C

`|vecg| ge sqrt(3/2)`

D

`|vecg| le sqrt(2/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the position vector of the centroid \( \vec{g} \) of a triangle formed by the unit vectors \( \vec{a}, \vec{b}, \vec{c} \) which are equally inclined to each other at an angle \( \theta \) (where \( \frac{\pi}{3} < \theta < \frac{\pi}{2} \)). ### Step-by-Step Solution: 1. **Understanding the Centroid**: The position vector of the centroid \( \vec{g} \) of a triangle with vertices at \( \vec{a}, \vec{b}, \vec{c} \) is given by: \[ \vec{g} = \frac{\vec{a} + \vec{b} + \vec{c}}{3} \] 2. **Finding the Magnitude of \( \vec{a} + \vec{b} + \vec{c} \)**: We need to find the magnitude of \( \vec{a} + \vec{b} + \vec{c} \). To do this, we calculate: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) \] 3. **Expanding the Dot Product**: Using the properties of dot products: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] Since \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors: \[ \vec{a} \cdot \vec{a} = \vec{b} \cdot \vec{b} = \vec{c} \cdot \vec{c} = 1 \] Let \( \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = \cos \theta \). Thus: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 3 + 2(3 \cos \theta) = 3 + 6 \cos \theta \] 4. **Finding the Magnitude**: Therefore, we have: \[ |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3 + 6 \cos \theta} \] 5. **Finding the Magnitude of \( \vec{g} \)**: Now, substituting back into the formula for \( \vec{g} \): \[ |\vec{g}| = \left|\frac{\vec{a} + \vec{b} + \vec{c}}{3}\right| = \frac{1}{3} |\vec{a} + \vec{b} + \vec{c}| = \frac{1}{3} \sqrt{3 + 6 \cos \theta} \] 6. **Evaluating the Range of \( \cos \theta \)**: Given \( \frac{\pi}{3} < \theta < \frac{\pi}{2} \), we know: \[ \cos \frac{\pi}{3} = \frac{1}{2} \quad \text{and} \quad \cos \frac{\pi}{2} = 0 \] Thus, \( \frac{1}{2} > \cos \theta > 0 \). 7. **Finding the Range of \( |\vec{g}| \)**: Therefore, we find the range of \( |\vec{g}| \): - When \( \cos \theta = \frac{1}{2} \): \[ |\vec{g}| = \frac{1}{3} \sqrt{3 + 6 \cdot \frac{1}{2}} = \frac{1}{3} \sqrt{6} \] - When \( \cos \theta = 0 \): \[ |\vec{g}| = \frac{1}{3} \sqrt{3 + 0} = \frac{1}{3} \sqrt{3} \] Thus, \( |\vec{g}| \) varies from \( \frac{1}{3} \sqrt{3} \) to \( \frac{1}{3} \sqrt{6} \). ### Final Result: The final expression for the magnitude of the centroid \( \vec{g} \) is: \[ |\vec{g}| = \frac{1}{3} \sqrt{3 + 6 \cos \theta} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three units vectors equally inclined to each other at an angle alpha . Then the angle between veca and plane of vecb and vecc is

Let vec a , vec b ,a n d vec c be non-coplanar unit vectors, equally inclined to one another at an angle theta then [ veca vecb vecc ] in terms of θ is equal to :

Let veca and vecb are unit vectors inclined at an angle alpha to each other , if |veca+vecb| lt 1 then

Let veca, vecb and vecc be non - coplanar unit vectors, equally inclined to one another at an angle theta . If veca xx vecb + vecb xx vecc = p veca + q vecb + rvecc , find scalars p, q and r in terms of theta .

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

Two vectors vecP and vecQ are inclined to each other at angle theta . Which of the following is the unit vector perpendicular to vecP and vecQ ?

Let veca, vecb , vecc be three vectors of equal magnitude such that the angle between each pair is pi/3 . If |veca + vecb + vecc| = sqrt6 , then |veca|=

Let ABC be a triangle whose circumcenter is at P, if the positions vectors of A,B,C and P are veca,vecb,vecc and (veca + vecb+vecc)/4 respectively, then the positions vector of the orthocenter of this triangle, is:

If the unit vectors veca and vecb are inclined of an angle 2 theta such that |veca -vecb| lt 1 and 0 le theta le pi then theta in the interval

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

VMC MODULES ENGLISH-VECTORS -LEVEL -2
  1. If I is the centre of a circle inscribed in a triangle ABC, then |vec...

    Text Solution

    |

  2. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  3. Let veca, vecb,vecc be unit vectors, equally inclined to each other at...

    Text Solution

    |

  4. Let veca,vecb,vecc be three non coplanar and vecdbe a vector which is ...

    Text Solution

    |

  5. If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2...

    Text Solution

    |

  6. Let veca, vecb and vecc be three non- coplanar vectors and vecr be any...

    Text Solution

    |

  7. If vecu and vecv be unit vectors. If vecw is a vector such that vecw+(...

    Text Solution

    |

  8. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  9. If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr...

    Text Solution

    |

  10. Given a cube ABCD A(1)B(1)C(1)D(1) which lower base ABCD, upper base A...

    Text Solution

    |

  11. Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, ...

    Text Solution

    |

  12. If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vec...

    Text Solution

    |

  13. I' is the incentre of DeltaABC whose corresponding sides are a,b,c res...

    Text Solution

    |

  14. Consider a tetrahedron with faces F(1),F(2),F(3),F(4). Let vec(V(1)), ...

    Text Solution

    |

  15. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  16. In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar...

    Text Solution

    |

  17. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  18. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  19. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  20. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |