Home
Class 12
MATHS
If veca, vecb, vecc are unit vectors, th...

If `veca, vecb, vecc` are unit vectors, then `|veca-vecb|^2+|vecb-vecc|^2+|vecc^2-veca^2|^2` does not exceed (A) 4 (B) 9 (C) 8 (D) 6

A

4

B

9

C

8

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( |\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 \) given that \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors. ### Step-by-step Solution: 1. **Expand the squares**: We start by expanding each term using the formula \( |\vec{x} - \vec{y}|^2 = |\vec{x}|^2 + |\vec{y}|^2 - 2\vec{x} \cdot \vec{y} \). - For \( |\vec{a} - \vec{b}|^2 \): \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b} \] Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, \( |\vec{a}|^2 = 1 \) and \( |\vec{b}|^2 = 1 \): \[ |\vec{a} - \vec{b}|^2 = 1 + 1 - 2\vec{a} \cdot \vec{b} = 2 - 2\vec{a} \cdot \vec{b} \] - For \( |\vec{b} - \vec{c}|^2 \): \[ |\vec{b} - \vec{c}|^2 = |\vec{b}|^2 + |\vec{c}|^2 - 2\vec{b} \cdot \vec{c} = 1 + 1 - 2\vec{b} \cdot \vec{c} = 2 - 2\vec{b} \cdot \vec{c} \] - For \( |\vec{c} - \vec{a}|^2 \): \[ |\vec{c} - \vec{a}|^2 = |\vec{c}|^2 + |\vec{a}|^2 - 2\vec{c} \cdot \vec{a} = 1 + 1 - 2\vec{c} \cdot \vec{a} = 2 - 2\vec{c} \cdot \vec{a} \] 2. **Combine the results**: Now, we combine all the expanded terms: \[ |\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = (2 - 2\vec{a} \cdot \vec{b}) + (2 - 2\vec{b} \cdot \vec{c}) + (2 - 2\vec{c} \cdot \vec{a}) \] Simplifying this gives: \[ = 6 - 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] 3. **Analyzing the dot products**: Since \( \vec{a}, \vec{b}, \vec{c} \) are unit vectors, the dot products \( \vec{a} \cdot \vec{b}, \vec{b} \cdot \vec{c}, \vec{c} \cdot \vec{a} \) can each range from -1 to 1. Therefore, the sum \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) can range from -3 to 3. 4. **Finding the maximum value**: The maximum value of \( 6 - 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \) occurs when \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) is minimized. The minimum occurs at -3: \[ 6 - 2(-3) = 6 + 6 = 12 \] However, this is not possible since the vectors are unit vectors. The maximum occurs when the dot products are at their maximum (which is 3): \[ 6 - 2(3) = 6 - 6 = 0 \] 5. **Finding the minimum value**: The minimum occurs when the dot products are at their maximum (which is 3): \[ 6 - 2(3) = 6 - 6 = 0 \] 6. **Conclusion**: Thus, the expression \( |\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 \) does not exceed 6. ### Final Answer: The answer is (D) 6.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then find the value of " |2veca+ 5vecb+ 5vecc|

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

VMC MODULES ENGLISH-VECTORS -LEVEL -2
  1. Let veca, vecb,vecc be unit vectors, equally inclined to each other at...

    Text Solution

    |

  2. Let veca,vecb,vecc be three non coplanar and vecdbe a vector which is ...

    Text Solution

    |

  3. If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2...

    Text Solution

    |

  4. Let veca, vecb and vecc be three non- coplanar vectors and vecr be any...

    Text Solution

    |

  5. If vecu and vecv be unit vectors. If vecw is a vector such that vecw+(...

    Text Solution

    |

  6. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  7. If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr...

    Text Solution

    |

  8. Given a cube ABCD A(1)B(1)C(1)D(1) which lower base ABCD, upper base A...

    Text Solution

    |

  9. Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, ...

    Text Solution

    |

  10. If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vec...

    Text Solution

    |

  11. I' is the incentre of DeltaABC whose corresponding sides are a,b,c res...

    Text Solution

    |

  12. Consider a tetrahedron with faces F(1),F(2),F(3),F(4). Let vec(V(1)), ...

    Text Solution

    |

  13. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  14. In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar...

    Text Solution

    |

  15. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  16. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  17. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  18. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  19. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  20. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |