Home
Class 12
MATHS
Given a cube ABCD A(1)B(1)C(1)D(1) which...

Given a cube ABCD `A_(1)B_(1)C_(1)D_(1)` which lower base ABCD, upper base `A_(1)B_(1)C_(1)D_(1)` and the lateral edges `"AA"_(1), "BB"_(1),"CC"_(1)` and `"DD"_(1)` M and `M_(1)` are the centres of the forces ABCD and `A_(1)B_(1)C_(1)D_(1)` respectively. O is a point on the line `MM_(2)` such that `bar(OA) + bar(OB), bar(OC) + bar(OD) = bar(OM)`, then `bar(OM)=lambda(OM_(1))` is equal to

A

`1//16`

B

`1//8`

C

`1//4`

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the geometric relationships and the properties of the cube and its centers of mass. Here's a step-by-step solution: ### Step 1: Understand the Geometry We have a cube with vertices labeled as follows: - Lower base: \( A, B, C, D \) - Upper base: \( A_1, B_1, C_1, D_1 \) - Lateral edges: \( AA_1, BB_1, CC_1, DD_1 \) The centers of the lower base \( ABCD \) and the upper base \( A_1B_1C_1D_1 \) are denoted as \( M \) and \( M_1 \) respectively. ### Step 2: Define Points Assume the cube has a side length of \( a \): - Let \( A = (0, 0, 0) \) - \( B = (a, 0, 0) \) - \( C = (a, a, 0) \) - \( D = (0, a, 0) \) - \( A_1 = (0, 0, a) \) - \( B_1 = (a, 0, a) \) - \( C_1 = (a, a, a) \) - \( D_1 = (0, a, a) \) ### Step 3: Calculate the Centers The center \( M \) of the lower base \( ABCD \) is given by: \[ M = \left( \frac{0 + a + a + 0}{4}, \frac{0 + 0 + a + a}{4}, 0 \right) = \left( \frac{a}{2}, \frac{a}{2}, 0 \right) \] The center \( M_1 \) of the upper base \( A_1B_1C_1D_1 \) is given by: \[ M_1 = \left( \frac{0 + a + a + 0}{4}, \frac{0 + 0 + a + a}{4}, a \right) = \left( \frac{a}{2}, \frac{a}{2}, a \right) \] ### Step 4: Define Point O Point \( O \) is on the line \( MM_1 \). The coordinates of \( O \) can be expressed as: \[ O = (x_O, y_O, z_O) = \left( \frac{a}{2}, \frac{a}{2}, k \right) \quad \text{for some } k \text{ between } 0 \text{ and } a \] ### Step 5: Set Up the Equation According to the problem, we have: \[ \overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} = \overline{OM} \] Calculating each term: - \( \overline{OA} = \sqrt{\left(\frac{a}{2} - 0\right)^2 + \left(\frac{a}{2} - 0\right)^2 + (k - 0)^2} = \sqrt{\frac{a^2}{4} + \frac{a^2}{4} + k^2} = \sqrt{\frac{a^2}{2} + k^2} \) - \( \overline{OB} = \sqrt{\left(\frac{a}{2} - a\right)^2 + \left(\frac{a}{2} - 0\right)^2 + (k - 0)^2} = \sqrt{\left(-\frac{a}{2}\right)^2 + \frac{a^2}{4} + k^2} = \sqrt{\frac{a^2}{4} + \frac{a^2}{4} + k^2} = \sqrt{\frac{a^2}{2} + k^2} \) - \( \overline{OC} = \sqrt{\left(\frac{a}{2} - a\right)^2 + \left(\frac{a}{2} - a\right)^2 + (k - 0)^2} = \sqrt{\left(-\frac{a}{2}\right)^2 + \left(-\frac{a}{2}\right)^2 + k^2} = \sqrt{\frac{a^2}{2} + k^2} \) - \( \overline{OD} = \sqrt{\left(\frac{a}{2} - 0\right)^2 + \left(\frac{a}{2} - a\right)^2 + (k - 0)^2} = \sqrt{\frac{a^2}{4} + \left(-\frac{a}{2}\right)^2 + k^2} = \sqrt{\frac{a^2}{2} + k^2} \) ### Step 6: Combine Terms Adding these distances: \[ \overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} = 4\sqrt{\frac{a^2}{2} + k^2} \] ### Step 7: Calculate OM Now, calculate \( \overline{OM} \): \[ \overline{OM} = \sqrt{\left(\frac{a}{2} - \frac{a}{2}\right)^2 + \left(\frac{a}{2} - \frac{a}{2}\right)^2 + (k - 0)^2} = |k| \] ### Step 8: Set the Equation Setting the two expressions equal: \[ 4\sqrt{\frac{a^2}{2} + k^2} = |k| \] ### Step 9: Solve for k Squaring both sides: \[ 16\left(\frac{a^2}{2} + k^2\right) = k^2 \] \[ 16\frac{a^2}{2} + 16k^2 = k^2 \] \[ 15k^2 = 8a^2 \] \[ k^2 = \frac{8a^2}{15} \] ### Step 10: Calculate OM1 Now, we find \( \overline{OM_1} \): \[ \overline{OM_1} = \sqrt{\left(\frac{a}{2} - \frac{a}{2}\right)^2 + \left(\frac{a}{2} - \frac{a}{2}\right)^2 + (k - a)^2} = |k - a| \] ### Step 11: Relate OM and OM1 We know \( \overline{OM} = \lambda \overline{OM_1} \). Substituting the values we have: \[ |k| = \lambda |k - a| \] ### Step 12: Solve for λ Substituting \( k = \sqrt{\frac{8a^2}{15}} \): \[ \sqrt{\frac{8a^2}{15}} = \lambda \left|\sqrt{\frac{8a^2}{15}} - a\right| \] Calculating \( \left|\sqrt{\frac{8a^2}{15}} - a\right| \): \[ \left|\sqrt{\frac{8}{15}} - 1\right|a \] Thus, we can find \( \lambda \) by simplifying the equation. ### Final Result After solving the equations, we find: \[ \lambda = \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Show that the points A (5,6) B (1,5) and C (2,1) and D (6,2) are the vertices of a square ABCD.

Show that the points A (5, 6), B(1,5), C(2, 1) and D(6, 2) are the vertices of a square ABCD.

If the points (a_(1),b_(1))m(a_(2),b_(2))" and " (a_(1)-a_(2),b_(2)-b_(2)) are collinear, then prove that a_(1)/a_(2)=b_(1)/b_(2)

Let the incircle of DeltaABC touches the sides BC, CA, AB at A_(1), B_(1),C_(1) respectively. The incircle of DeltaA_(1)B_(1)C_(1) touches its sides of B_(1)C_(1), C_(1)A_(1) and A_(1)B_(1)" at " A_(2), B_(2), C_(2) respectively and so on. Q. lim_(n to oo) angleA_(n)=

Let the incircle of DeltaABC touches the sides BC, CA, AB at A_(1), B_(1),C_(1) respectively. The incircle of DeltaA_(1)B_(1)C_(1) touches its sides of B_(1)C_(1), C_(1)A_(1) and A_(1)B_(1)" at " A_(2), B_(2), C_(2) respectively and so on. Q. In DeltaA_(4)B_(4)C_(4) , the value of angleA_(4) is:

If the points A(-2,-1),B(1,0),C(a,3) and D(1,b) form a parallelogram ABCD, Then the values of a and b are

Evaluate : 1.bar(45)+0.bar(3)

Find the radius and centre of the circle z bar(z) + (1-i) z + (1+ i) bar(z)- 7 = 0

Consider triangleABC and triangleA_1B_1C_1 in such a way that bar(AB)=bar(A_1B_1) and M, N, M_1 ,N_1 be the midpoints of AB, BC, A_1B_1 and B_1C_1 respectively, then

If the midpoint of the sides bar(BC), bar(CA), bar(AB) of DeltaABC are (3, -3), (3, -1), (1, 1) respectively then the vertices A, B, C are

VMC MODULES ENGLISH-VECTORS -LEVEL -2
  1. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  2. If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr...

    Text Solution

    |

  3. Given a cube ABCD A(1)B(1)C(1)D(1) which lower base ABCD, upper base A...

    Text Solution

    |

  4. Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, ...

    Text Solution

    |

  5. If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vec...

    Text Solution

    |

  6. I' is the incentre of DeltaABC whose corresponding sides are a,b,c res...

    Text Solution

    |

  7. Consider a tetrahedron with faces F(1),F(2),F(3),F(4). Let vec(V(1)), ...

    Text Solution

    |

  8. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  9. In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar...

    Text Solution

    |

  10. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  11. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  12. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  13. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  14. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  15. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  16. If veca, vecb, vecc are three given non-coplanar vectors and any arbit...

    Text Solution

    |

  17. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  18. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  19. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  20. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |