Home
Class 12
MATHS
Let veca, vecb, vecc be three non-zero n...

Let `veca, vecb, vecc` be three non-zero non coplanar vectors and `vecp, vecq` and `vecr` be three vectors given by `vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc` and `vecr=veca-4vecb+2vecc`
If the volume of the parallelopiped determined by `veca, vecb` and `vecc` is `V_(1)` and that of the parallelopiped determined by `vecp, vecq` and `vecr` is `V_(2)`, then `V_(2):V_(1)=`

A

`3:1`

B

`7:1`

C

`11:1`

D

`15:1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the volumes \( V_2 : V_1 \) of the parallelepipeds formed by the vectors \( \vec{a}, \vec{b}, \vec{c} \) and \( \vec{p}, \vec{q}, \vec{r} \). ### Step-by-Step Solution: 1. **Define the Volume of the Parallelepiped**: The volume \( V \) of a parallelepiped formed by vectors \( \vec{u}, \vec{v}, \vec{w} \) can be expressed using the scalar triple product: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] 2. **Calculate \( V_1 \)**: For the vectors \( \vec{a}, \vec{b}, \vec{c} \), the volume \( V_1 \) is given by: \[ V_1 = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] 3. **Express the Vectors \( \vec{p}, \vec{q}, \vec{r} \)**: Given: \[ \vec{p} = \vec{a} + \vec{b} - 2\vec{c} \] \[ \vec{q} = 3\vec{a} - 2\vec{b} + \vec{c} \] \[ \vec{r} = \vec{a} - 4\vec{b} + 2\vec{c} \] 4. **Formulate the Determinant for \( V_2 \)**: The volume \( V_2 \) can be calculated as: \[ V_2 = |\vec{p} \cdot (\vec{q} \times \vec{r})| \] To find this, we need to compute the determinant of the matrix formed by \( \vec{p}, \vec{q}, \vec{r} \): \[ V_2 = \begin{vmatrix} 1 & 1 & -2 \\ 3 & -2 & 1 \\ 1 & -4 & 2 \end{vmatrix} \] 5. **Calculate the Determinant**: Using the determinant formula: \[ V_2 = 1 \cdot \begin{vmatrix} -2 & 1 \\ -4 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} - 2 \cdot \begin{vmatrix} 3 & -2 \\ 1 & -4 \end{vmatrix} \] Calculating each of these 2x2 determinants: - \( \begin{vmatrix} -2 & 1 \\ -4 & 2 \end{vmatrix} = (-2)(2) - (1)(-4) = -4 + 4 = 0 \) - \( \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = (3)(2) - (1)(1) = 6 - 1 = 5 \) - \( \begin{vmatrix} 3 & -2 \\ 1 & -4 \end{vmatrix} = (3)(-4) - (-2)(1) = -12 + 2 = -10 \) Plugging these back into the determinant: \[ V_2 = 1 \cdot 0 - 1 \cdot 5 - 2 \cdot (-10) = 0 - 5 + 20 = 15 \] 6. **Find the Ratio \( V_2 : V_1 \)**: Since \( V_1 \) is the volume of the parallelepiped formed by \( \vec{a}, \vec{b}, \vec{c} \) (which we can assume to be 1 for simplicity), we have: \[ V_1 = 1 \] Thus, the ratio \( V_2 : V_1 \) is: \[ V_2 : V_1 = 15 : 1 \] ### Final Answer: \[ V_2 : V_1 = 15 : 1 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, vecq and vecr be three vectors given by vecp=veca+vecb-2vecc, vecq=3veca-2vecb+vecc and vecr=veca-4vcb+2vecc If the volume of the parallelopiped determined by veca, vecb and vecc is V_(1) and that of the parallelopiped determined by veca, vecq and vecr is V_(2) , then V_(2):V_(1)=

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 8vecb+6vecc, veca+vecb+vecc, 2veca-vecb+vecc, veca-vecb-vecc

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 4veca+5vecb+vecc,-vecb-vecc, 3veca+9vecb+4vecc,-4veca+4vecb+4vecc

If veca, vecb, vecc are non coplanar vectors and vecp, vecq, vecr are reciprocal vectors, then (lveca+mvecb+nvecc).(lvecp+mvecq+nvecr) is equal to

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 2veca-3vecb+4vecc, -veca+3vecb-5vecc,-veca+2vecb-3vecc

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

VMC MODULES ENGLISH-VECTORS -LEVEL -2
  1. If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr...

    Text Solution

    |

  2. Given a cube ABCD A(1)B(1)C(1)D(1) which lower base ABCD, upper base A...

    Text Solution

    |

  3. Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, ...

    Text Solution

    |

  4. If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vec...

    Text Solution

    |

  5. I' is the incentre of DeltaABC whose corresponding sides are a,b,c res...

    Text Solution

    |

  6. Consider a tetrahedron with faces F(1),F(2),F(3),F(4). Let vec(V(1)), ...

    Text Solution

    |

  7. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  8. In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar...

    Text Solution

    |

  9. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  10. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  11. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  12. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  13. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  14. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  15. If veca, vecb, vecc are three given non-coplanar vectors and any arbit...

    Text Solution

    |

  16. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  17. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  18. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  19. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  20. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |