Home
Class 12
MATHS
If veca, vecb, vecc are unit vectors suc...

If `veca, vecb, vecc` are unit vectors such that `veca. vecb=0, (veca-vecc).(vecb+vecc)=0` and `vecc=lambdaveca+muvecb+omega(veca xx vecb)`, where `lambda, mu, omega` are scalars, then

A

`u^(2) + w^(2)=1`

B

`2u^(2) + w^(2)=1`

C

`2u(u+1)+w^(2)=0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the conditions provided and derive the necessary equations. ### Step 1: Understand the given conditions We have three unit vectors: \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). The following conditions are given: 1. \(\vec{a} \cdot \vec{b} = 0\) (which means \(\vec{a}\) and \(\vec{b}\) are perpendicular). 2. \((\vec{a} - \vec{c}) \cdot (\vec{b} + \vec{c}) = 0\). 3. \(\vec{c} = \lambda \vec{a} + \mu \vec{b} + \omega (\vec{a} \times \vec{b})\), where \(\lambda\), \(\mu\), and \(\omega\) are scalars. ### Step 2: Analyze the first condition Since \(\vec{a}\) and \(\vec{b}\) are unit vectors and perpendicular, we have: \[ |\vec{a}| = 1, \quad |\vec{b}| = 1, \quad \vec{a} \cdot \vec{b} = 0. \] ### Step 3: Analyze the second condition Expanding the second condition: \[ (\vec{a} - \vec{c}) \cdot (\vec{b} + \vec{c}) = 0. \] This expands to: \[ \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} - \vec{c} \cdot \vec{b} - \vec{c} \cdot \vec{c} = 0. \] Since \(\vec{a} \cdot \vec{b} = 0\) and \(|\vec{c}| = 1\) (as \(\vec{c}\) is a unit vector), we can substitute: \[ 0 + \vec{a} \cdot \vec{c} - \vec{c} \cdot \vec{b} - 1 = 0. \] Thus, we have: \[ \vec{a} \cdot \vec{c} - \vec{c} \cdot \vec{b} - 1 = 0. \] Rearranging gives: \[ \vec{a} \cdot \vec{c} - \vec{c} \cdot \vec{b} = 1. \] ### Step 4: Substitute \(\vec{c}\) Substituting \(\vec{c} = \lambda \vec{a} + \mu \vec{b} + \omega (\vec{a} \times \vec{b})\) into the equation: \[ \vec{a} \cdot (\lambda \vec{a} + \mu \vec{b} + \omega (\vec{a} \times \vec{b})) - (\lambda \vec{a} + \mu \vec{b} + \omega (\vec{a} \times \vec{b})) \cdot \vec{b} = 1. \] Calculating the dot products: 1. \(\vec{a} \cdot \vec{c} = \lambda (\vec{a} \cdot \vec{a}) + \mu (\vec{a} \cdot \vec{b}) + \omega (\vec{a} \cdot (\vec{a} \times \vec{b})) = \lambda\) (since \(\vec{a} \cdot \vec{b} = 0\) and \(\vec{a} \cdot (\vec{a} \times \vec{b}) = 0\)). 2. \(\vec{c} \cdot \vec{b} = \lambda (\vec{b} \cdot \vec{a}) + \mu (\vec{b} \cdot \vec{b}) + \omega (\vec{b} \cdot (\vec{a} \times \vec{b})) = \mu\) (since \(\vec{b} \cdot \vec{a} = 0\) and \(\vec{b} \cdot (\vec{a} \times \vec{b}) = 0\)). Substituting these results back gives: \[ \lambda - \mu = 1. \] ### Step 5: Magnitude of \(\vec{c}\) Since \(\vec{c}\) is a unit vector, we have: \[ |\vec{c}|^2 = \lambda^2 + \mu^2 + \omega^2 = 1. \] ### Step 6: Solve the equations From \(\lambda - \mu = 1\), we can express \(\lambda\) as: \[ \lambda = \mu + 1. \] Substituting this into the magnitude equation: \[ (\mu + 1)^2 + \mu^2 + \omega^2 = 1. \] Expanding gives: \[ \mu^2 + 2\mu + 1 + \mu^2 + \omega^2 = 1. \] This simplifies to: \[ 2\mu^2 + 2\mu + \omega^2 + 1 = 1. \] Thus: \[ 2\mu^2 + 2\mu + \omega^2 = 0. \] ### Step 7: Analyze the quadratic equation This equation can be factored or analyzed for roots. Since all terms are squared, we can conclude: \[ \mu = 0 \quad \text{and} \quad \omega = 0. \] Substituting \(\mu = 0\) back gives \(\lambda = 1\). ### Conclusion Thus, we have: \[ \lambda = 1, \quad \mu = 0, \quad \omega = 0. \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

VMC MODULES ENGLISH-VECTORS -LEVEL -2
  1. Given a cube ABCD A(1)B(1)C(1)D(1) which lower base ABCD, upper base A...

    Text Solution

    |

  2. Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, ...

    Text Solution

    |

  3. If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vec...

    Text Solution

    |

  4. I' is the incentre of DeltaABC whose corresponding sides are a,b,c res...

    Text Solution

    |

  5. Consider a tetrahedron with faces F(1),F(2),F(3),F(4). Let vec(V(1)), ...

    Text Solution

    |

  6. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  7. In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar...

    Text Solution

    |

  8. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  9. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  10. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  11. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  12. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  13. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  14. If veca, vecb, vecc are three given non-coplanar vectors and any arbit...

    Text Solution

    |

  15. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  16. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  17. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  18. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  19. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  20. Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make...

    Text Solution

    |