Home
Class 12
MATHS
Consider a tetrahedron with faces F(1),F...

Consider a tetrahedron with faces `F_(1),F_(2),F_(3),F_(4)`. Let `vec(V_(1)), vecV_(2),vecV_(3),vecV_(4)` be the vectors whose magnitude are respectively equal to areas of `F_(1).F_(2).F_(3).F_(4)` and whose directions are perpendicular to their faces in outward direction. Then `|vecV_(1) + vecV_(2) + vecV_(3) + vecV_(4)|`, equals:

A

1

B

4

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector sum of the vectors associated with the areas of the faces of a tetrahedron. Let's denote the vectors corresponding to the areas of the faces as \( \vec{V}_1, \vec{V}_2, \vec{V}_3, \vec{V}_4 \). ### Step-by-step Solution: 1. **Understanding the Faces and Vectors**: - The tetrahedron has four faces: \( F_1, F_2, F_3, F_4 \). - The vectors \( \vec{V}_1, \vec{V}_2, \vec{V}_3, \vec{V}_4 \) represent the areas of these faces and are directed outward, perpendicular to each face. 2. **Expressing the Area Vectors**: - The area of face \( F_1 \) can be expressed as: \[ \vec{V}_1 = \frac{1}{2} \vec{A} \times \vec{B} \] - For face \( F_2 \): \[ \vec{V}_2 = \frac{1}{2} \vec{B} \times \vec{C} \] - For face \( F_3 \): \[ \vec{V}_3 = \frac{1}{2} \vec{C} \times \vec{A} \] - For face \( F_4 \): \[ \vec{V}_4 = \frac{1}{2} (\vec{A} - \vec{B}) \times (\vec{C} - \vec{B}) \] 3. **Simplifying \( \vec{V}_4 \)**: - We can expand \( \vec{V}_4 \): \[ \vec{V}_4 = \frac{1}{2} \left( \vec{A} \times \vec{C} - \vec{A} \times \vec{B} - \vec{B} \times \vec{C} + \vec{B} \times \vec{B} \right) \] - Since \( \vec{B} \times \vec{B} = 0 \), we have: \[ \vec{V}_4 = \frac{1}{2} \left( \vec{A} \times \vec{C} - \vec{A} \times \vec{B} - \vec{B} \times \vec{C} \right) \] 4. **Summing the Vectors**: - Now, we sum all the vectors: \[ \vec{V}_1 + \vec{V}_2 + \vec{V}_3 + \vec{V}_4 = \frac{1}{2} \left( \vec{A} \times \vec{B} + \vec{B} \times \vec{C} + \vec{C} \times \vec{A} + \vec{A} \times \vec{C} - \vec{A} \times \vec{B} - \vec{B} \times \vec{C} \right) \] 5. **Canceling Terms**: - Notice that \( \vec{A} \times \vec{B} \) and \( \vec{B} \times \vec{C} \) cancel out: \[ \vec{V}_1 + \vec{V}_2 + \vec{V}_3 + \vec{V}_4 = \frac{1}{2} \left( \vec{C} \times \vec{A} - \vec{A} \times \vec{C} \right) = 0 \] 6. **Magnitude of the Sum**: - The magnitude of the vector sum is: \[ |\vec{V}_1 + \vec{V}_2 + \vec{V}_3 + \vec{V}_4| = |0| = 0 \] ### Final Answer: \[ |\vec{V}_1 + \vec{V}_2 + \vec{V}_3 + \vec{V}_4| = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

A unit vector perpendicular to vector vecV=(3,-4) is

If F_(1) and F_(2) are two vectors of equal magnitudes F such that |F_(1).F_(2)|= |F_(1)xxF_(2)|, "then"|F_(1) +F_(2)| equals to

If |vecV_1+vecV_2|=|vecV_1-vecV_2| and V_2 is finite, then

Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if the projection of vecv " along " vecu is equal to that of vecw along vecu and vectors vecv and vecw are perpendicular to each other then |vecu-vecv + vecw| equals

Let vector vec(V)=(2,3) and vector vec(U)=(6,-4) . Are vecU and vecV perpendicular?

A unit vector parallel to vector vecV=(2,-3,6) is vector

Let vecu,vecv,vecw be such that |vecu|=1,|vecv|=2,|vecw|3 . If the projection of vecv along vecu is equal to that of vecw along vecv,vecw are perpendicular to each other then |vecu-vecv+vecw| equals (A) 2 (B) sqrt(7) (C) sqrt(14) (D) 14

If vecV=2veci+3vecj and vecY=veci-5vecj , the resultant vector of 2vecU+3vecV equals

If vecu and vecv are unit vectors and theta is the acute angle between them, then 2 vecu xx 3vecv is a unit vector for

If vecu and vecv are unit vectors and theta is the acute angle between them, then 2 vecu xx 3vecv is a unit vector for

VMC MODULES ENGLISH-VECTORS -LEVEL -2
  1. If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vec...

    Text Solution

    |

  2. I' is the incentre of DeltaABC whose corresponding sides are a,b,c res...

    Text Solution

    |

  3. Consider a tetrahedron with faces F(1),F(2),F(3),F(4). Let vec(V(1)), ...

    Text Solution

    |

  4. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  5. In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar...

    Text Solution

    |

  6. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  7. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  8. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  9. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  10. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  11. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  12. If veca, vecb, vecc are three given non-coplanar vectors and any arbit...

    Text Solution

    |

  13. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  14. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  15. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  16. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  17. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  18. Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make...

    Text Solution

    |

  19. Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make...

    Text Solution

    |

  20. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |