Home
Class 12
MATHS
In triangle ABC if bar(AB) =u/(|bar u|)...

In triangle ABC if `bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar u)/(|baru|)` where `|bar u| != |bar |v|` then

A

1+ cos 2A +cos 2B + cos 2C=0

B

sin A = cos C

C

projection of AC on BC is equal to BC

D

projection of AB on BC is equal to AB

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given vectors and their relationships in triangle ABC. ### Step 1: Understand the Given Vectors We have: - \( \overline{AB} = \frac{\mathbf{u}}{|\mathbf{u}|} - \frac{\mathbf{v}}{|\mathbf{v}|} \) - \( \overline{AC} = \frac{2\mathbf{u}}{|\mathbf{u}|} \) ### Step 2: Rewrite the Vectors in Unit Vector Form The vectors \( \frac{\mathbf{u}}{|\mathbf{u}|} \) and \( \frac{\mathbf{v}}{|\mathbf{v}|} \) are unit vectors. Let's denote: - \( \mathbf{u}_{\text{cap}} = \frac{\mathbf{u}}{|\mathbf{u}|} \) - \( \mathbf{v}_{\text{cap}} = \frac{\mathbf{v}}{|\mathbf{v}|} \) Thus, we can rewrite: - \( \overline{AB} = \mathbf{u}_{\text{cap}} - \mathbf{v}_{\text{cap}} \) - \( \overline{AC} = 2\mathbf{u}_{\text{cap}} \) ### Step 3: Assign Points in the Triangle Assuming point A is at the origin (0, 0): - Let \( A = \mathbf{0} \) - \( B = \overline{AB} = \mathbf{u}_{\text{cap}} - \mathbf{v}_{\text{cap}} \) - \( C = \overline{AC} = 2\mathbf{u}_{\text{cap}} \) ### Step 4: Calculate the Magnitudes of the Vectors 1. **Magnitude of \( \overline{AB} \)**: \[ |\overline{AB}| = |\mathbf{u}_{\text{cap}} - \mathbf{v}_{\text{cap}}| \] Since both \( \mathbf{u}_{\text{cap}} \) and \( \mathbf{v}_{\text{cap}} \) are unit vectors: \[ |\overline{AB}| = \sqrt{|\mathbf{u}_{\text{cap}}|^2 + |\mathbf{v}_{\text{cap}}|^2 - 2|\mathbf{u}_{\text{cap}}||\mathbf{v}_{\text{cap}}|\cos(\theta)} \] where \( \theta \) is the angle between \( \mathbf{u}_{\text{cap}} \) and \( \mathbf{v}_{\text{cap}} \). 2. **Magnitude of \( \overline{AC} \)**: \[ |\overline{AC}| = |2\mathbf{u}_{\text{cap}}| = 2 \] ### Step 5: Calculate \( \overline{BC} \) To find \( \overline{BC} \): \[ \overline{BC} = \overline{AC} - \overline{AB} = 2\mathbf{u}_{\text{cap}} - (\mathbf{u}_{\text{cap}} - \mathbf{v}_{\text{cap}}) = \mathbf{u}_{\text{cap}} + \mathbf{v}_{\text{cap}} \] ### Step 6: Magnitude of \( \overline{BC} \) \[ |\overline{BC}| = |\mathbf{u}_{\text{cap}} + \mathbf{v}_{\text{cap}}| = \sqrt{|\mathbf{u}_{\text{cap}}|^2 + |\mathbf{v}_{\text{cap}}|^2 + 2|\mathbf{u}_{\text{cap}}||\mathbf{v}_{\text{cap}}|\cos(\phi)} \] where \( \phi \) is the angle between \( \mathbf{u}_{\text{cap}} \) and \( \mathbf{v}_{\text{cap}} \). ### Step 7: Apply Pythagorean Theorem Since we have a triangle, we can apply the Pythagorean theorem: \[ |\overline{AC}|^2 = |\overline{AB}|^2 + |\overline{BC}|^2 \] Substituting the magnitudes we found: \[ 2^2 = |\overline{AB}|^2 + |\overline{BC}|^2 \] ### Step 8: Determine Angles From the triangle properties, we can find angles: - If \( |\overline{AB}| = |\overline{BC}| \), then angles at A and C are equal. ### Step 9: Final Calculation Using the angles, we can find \( 2A, 2B, 2C \) and calculate \( 1 + \cos(2A) + \cos(2B) + \cos(2C) \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

In a regular hexagon ABCDEF, bar(AB) + bar(AC)+bar(AD)+ bar(AE) + bar(AF)=k bar(AD) then k is equal to

In the figure shown below, E and G lie on bar(AC) , D and F lie on bar(AB), bar(DE) and bar(FG) are parallel to bar(BC) , and the given lengths are in feet. What is the length of bar(AC) , in feet?

In the Boolean algebra bar(A).bar(B) equals

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

Let bar a,bar b,bar c be three non-coplanar vectors and bar d be a non-zero vector, which is perpendicularto bar a+bar b+bar c . Now, if bar d= (sin x)(bar a xx bar b) + (cos y)(bar b xx bar c) + 2(bar c xx bar a) then minimum value of x^2+y^2 is equal to

In the circle above with diameter d, chords bar(PQ) and bar(TU) are parallel to diameter bar(RS) . If bar(PQ) and bar(TU) are each (3)/(4) of the length of bar(RS) , what is the distance between chords bar(PQ) and bar(TU) in terms of d?

In quadrilateral ABCD above , bar(AD) bar(BC) and CD=1/2AB . What is the measure of angle B ?

(bar(a)*bar(i))^(2)+(bar(a)*bar(j))^(2)+(bar(a)*bar(k))^(2)=

Let vec a be vector parallel to line of intersection of planes P_1 and P_2 through origin. If P_1 is parallel to the vectors 2 bar j + 3 bar k and 4 bar j - 3 bar k and P_2 is parallel to bar j - bar k and 3 bar I + 3 bar j , then the angle between vec a and 2 bar i +bar j - 2 bar k is :

VMC MODULES ENGLISH-VECTORS -LEVEL -2
  1. Consider a tetrahedron with faces F(1),F(2),F(3),F(4). Let vec(V(1)), ...

    Text Solution

    |

  2. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  3. In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar...

    Text Solution

    |

  4. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  5. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  6. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  7. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  8. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  9. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  10. If veca, vecb, vecc are three given non-coplanar vectors and any arbit...

    Text Solution

    |

  11. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  12. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  13. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  14. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  15. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  16. Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make...

    Text Solution

    |

  17. Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make...

    Text Solution

    |

  18. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |

  19. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |

  20. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |