Home
Class 12
MATHS
Let vec r xx veca = vec b xx veca and ve...

Let `vec r xx veca = vec b xx veca` and `vecc vec.r=0`, where `veca.vecc ne 0`, then `veca.vecc(vecr xx vecb)+(vecb.vecc)(veca xx vecr)` is equal to __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given expressions step by step. ### Given: 1. \( \vec{r} \times \vec{a} = \vec{b} \times \vec{a} \) 2. \( \vec{c} \cdot \vec{r} = 0 \) 3. \( \vec{a} \cdot \vec{c} \neq 0 \) We need to find the value of: \[ \vec{a} \cdot \vec{c} (\vec{r} \times \vec{b}) + (\vec{b} \cdot \vec{c})(\vec{a} \times \vec{r}) \] ### Step 1: Analyze the first condition From the first condition, we have: \[ \vec{r} \times \vec{a} = \vec{b} \times \vec{a} \] This implies that the vectors \( \vec{r} \) and \( \vec{b} \) are related through the vector \( \vec{a} \). ### Step 2: Cross product with vector \( \vec{c} \) Now, we take the cross product of both sides with \( \vec{c} \): \[ \vec{c} \times (\vec{r} \times \vec{a}) = \vec{c} \times (\vec{b} \times \vec{a}) \] Using the vector triple product identity, \( \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z})\vec{y} - (\vec{x} \cdot \vec{y})\vec{z} \), we can expand both sides: - Left-hand side: \[ \vec{c} \times (\vec{r} \times \vec{a}) = (\vec{c} \cdot \vec{a}) \vec{r} - (\vec{c} \cdot \vec{r}) \vec{a} \] - Right-hand side: \[ \vec{c} \times (\vec{b} \times \vec{a}) = (\vec{c} \cdot \vec{a}) \vec{b} - (\vec{c} \cdot \vec{b}) \vec{a} \] ### Step 3: Set the two sides equal Equating both sides gives us: \[ (\vec{c} \cdot \vec{a}) \vec{r} - (\vec{c} \cdot \vec{r}) \vec{a} = (\vec{c} \cdot \vec{a}) \vec{b} - (\vec{c} \cdot \vec{b}) \vec{a} \] ### Step 4: Substitute \( \vec{c} \cdot \vec{r} = 0 \) Since \( \vec{c} \cdot \vec{r} = 0 \), the equation simplifies to: \[ (\vec{c} \cdot \vec{a}) \vec{r} = (\vec{c} \cdot \vec{a}) \vec{b} \] ### Step 5: Factor out \( \vec{c} \cdot \vec{a} \) If \( \vec{c} \cdot \vec{a} \neq 0 \), we can divide both sides by \( \vec{c} \cdot \vec{a} \): \[ \vec{r} = \vec{b} \] ### Step 6: Substitute back into the expression Now substituting \( \vec{r} = \vec{b} \) into the expression we need to evaluate: \[ \vec{a} \cdot \vec{c} (\vec{b} \times \vec{b}) + (\vec{b} \cdot \vec{c})(\vec{a} \times \vec{b}) \] ### Step 7: Simplify the expression Since \( \vec{b} \times \vec{b} = \vec{0} \), the first term becomes: \[ \vec{a} \cdot \vec{c} \cdot \vec{0} = \vec{0} \] Thus, we are left with: \[ (\vec{b} \cdot \vec{c})(\vec{a} \times \vec{b}) \] ### Step 8: Analyze the second term Now, since \( \vec{a} \times \vec{b} \) is perpendicular to both \( \vec{a} \) and \( \vec{b} \), and if \( \vec{b} \cdot \vec{c} \) is not zero, we can conclude that the entire expression evaluates to zero because the cross product of two parallel vectors is zero. ### Final Result Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let vec r xx veca = vec b xx veca and vecc vecr=0 , where veca.vecc ne 0 , then veca.vecc(vecr xx vecb)+(vecb.vecc)(veca xx vecr) is equal to __________.

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If |veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0 then the value of ( veca. vecb + vecb.vecc) is equal tio

if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 then (a) |veca|= |vecc| (b) |veca|= |vecb| (c) |vecb|=1 (d) |veca|=|vecb|= |vecc|=1