Home
Class 12
MATHS
If veca, vecb, vecc, vecd are on a circl...

If `veca, vecb, vecc, vecd` are on a circle of radius R whose centre is a origin and `vecc - veca` is perpendicular to `vecd.vecb`, then `|vecd-veca|^(2) +|vecb-vecc|^(2) = kR^(2)` where k is equal to………………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and their relationships based on the information provided. Let's break down the solution step by step. ### Step-by-Step Solution: 1. **Understanding the Vectors**: Given that vectors \( \vec{a}, \vec{b}, \vec{c}, \vec{d} \) lie on a circle of radius \( R \) centered at the origin, we know: \[ |\vec{a}| = |\vec{b}| = |\vec{c}| = |\vec{d}| = R \] 2. **Using the Perpendicular Condition**: We are given that \( \vec{c} - \vec{a} \) is perpendicular to \( \vec{d} \cdot \vec{b} \). This means: \[ (\vec{c} - \vec{a}) \cdot (\vec{d} - \vec{b}) = 0 \] 3. **Expanding the Expression**: We need to find: \[ |\vec{d} - \vec{a}|^2 + |\vec{b} - \vec{c}|^2 \] This can be expanded using the dot product: \[ |\vec{d} - \vec{a}|^2 = (\vec{d} - \vec{a}) \cdot (\vec{d} - \vec{a}) = |\vec{d}|^2 - 2\vec{d} \cdot \vec{a} + |\vec{a}|^2 \] \[ |\vec{b} - \vec{c}|^2 = (\vec{b} - \vec{c}) \cdot (\vec{b} - \vec{c}) = |\vec{b}|^2 - 2\vec{b} \cdot \vec{c} + |\vec{c}|^2 \] 4. **Substituting Magnitudes**: Since \( |\vec{a}| = |\vec{b}| = |\vec{c}| = |\vec{d}| = R \), we substitute: \[ |\vec{d} - \vec{a}|^2 = R^2 - 2\vec{d} \cdot \vec{a} + R^2 = 2R^2 - 2\vec{d} \cdot \vec{a} \] \[ |\vec{b} - \vec{c}|^2 = R^2 - 2\vec{b} \cdot \vec{c} + R^2 = 2R^2 - 2\vec{b} \cdot \vec{c} \] 5. **Combining the Results**: Now, we combine the two expressions: \[ |\vec{d} - \vec{a}|^2 + |\vec{b} - \vec{c}|^2 = (2R^2 - 2\vec{d} \cdot \vec{a}) + (2R^2 - 2\vec{b} \cdot \vec{c}) \] \[ = 4R^2 - 2(\vec{d} \cdot \vec{a} + \vec{b} \cdot \vec{c}) \] 6. **Using the Perpendicular Condition**: Since \( \vec{c} - \vec{a} \) is perpendicular to \( \vec{d} - \vec{b} \), we have: \[ \vec{d} \cdot \vec{a} + \vec{b} \cdot \vec{c} = 0 \] Thus: \[ |\vec{d} - \vec{a}|^2 + |\vec{b} - \vec{c}|^2 = 4R^2 - 2(0) = 4R^2 \] 7. **Final Equation**: We have: \[ |\vec{d} - \vec{a}|^2 + |\vec{b} - \vec{c}|^2 = kR^2 \] Comparing both sides gives: \[ kR^2 = 4R^2 \implies k = 4 \] ### Conclusion: The value of \( k \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|36 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -2|47 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 and |vecc|=3. If the projection of vecb along veca is double of the projection of vecc along veca and vecb, vecc are perpendicular to each other, then the value of (|veca-vecb+2vecc|^(2))/(2) is equal to

Let veca,vecb,vecc be three non coplanar and vecd be a vector which is perpendicular to veca + vecb + vecc . If vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb the-

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{veca xx [vecb xx (vecc xx veca)]} is:

Given vec(a) is perpendicular to vecb+vecc , vecb is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

veca,vecb,vecc are three non-coplanar such that veca + vecb + vecc = alpha vecd and vecb + vecc + vecd = beta veca , then veca + vecb + vecc + vecd is equal to: